These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 30918371)

  • 1. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene).
    Jung EH; Jeon NJ; Park EY; Moon CS; Shin TJ; Yang TY; Noh JH; Seo J
    Nature; 2019 Mar; 567(7749):511-515. PubMed ID: 30918371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency.
    Kim GW; Kang G; Malekshahi Byranvand M; Lee GY; Park T
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27720-27726. PubMed ID: 28762266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Renaissance of Poly(3-hexylthiophene) as a Promising Hole-Transporting Material Toward Efficient and Stable Perovskite Solar Cells.
    Huang X; Wang X; Zou Y; An M; Wang Y
    Small; 2024 May; ():e2400874. PubMed ID: 38794876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-Processed Cu
    Han D; Wu C; Zhang Q; Wei S; Qi X; Zhao Y; Chen Y; Chen Y; Xiao L; Zhao Z
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31535-31540. PubMed ID: 30152687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter.
    Zhang M; Lyu M; Yu H; Yun JH; Wang Q; Wang L
    Chemistry; 2015 Jan; 21(1):434-9. PubMed ID: 25358456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers.
    Chen HW; Huang TY; Chang TH; Sanehira Y; Kung CW; Chu CW; Ikegami M; Miyasaka T; Ho KC
    Sci Rep; 2016 Oct; 6():34319. PubMed ID: 27698464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells.
    Mu S; Ye Q; Zhang X; Huang S; You J
    Front Optoelectron; 2020 Sep; 13(3):265-271. PubMed ID: 36641573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doping Strategy for Efficient and Stable Triple Cation Hybrid Perovskite Solar Cells and Module Based on Poly(3-hexylthiophene) Hole Transport Layer.
    Yaghoobi Nia N; Lamanna E; Zendehdel M; Palma AL; Zurlo F; Castriotta LA; Di Carlo A
    Small; 2019 Dec; 15(49):e1904399. PubMed ID: 31592571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-Processed Cu(In, Ga)(S, Se)
    Xu L; Deng LL; Cao J; Wang X; Chen WY; Jiang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):159. PubMed ID: 28249374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Hole-Transporting Poly(triarylamine) on Aggregation and Charge Transport for Hysteresisless Scalable Planar Perovskite Solar Cells.
    Ko Y; Kim Y; Lee C; Kim Y; Jun Y
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11633-11641. PubMed ID: 29557640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells.
    Urbani M; de la Torre G; Nazeeruddin MK; Torres T
    Chem Soc Rev; 2019 May; 48(10):2738-2766. PubMed ID: 31033978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process.
    Matteocci F; Razza S; Di Giacomo F; Casaluci S; Mincuzzi G; Brown TM; D'Epifanio A; Licoccia S; Di Carlo A
    Phys Chem Chem Phys; 2014 Mar; 16(9):3918-23. PubMed ID: 24452004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance carbon electrode-based CsPbI
    Wang G; Liu J; Chen K; Pathak R; Gurung A; Qiao Q
    J Colloid Interface Sci; 2019 Nov; 555():180-186. PubMed ID: 31377644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells.
    Liu J; Pathak S; Stergiopoulos T; Leijtens T; Wojciechowski K; Schumann S; Kausch-Busies N; Snaith HJ
    J Phys Chem Lett; 2015 May; 6(9):1666-73. PubMed ID: 26263331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules.
    Chen H; Ye F; Tang W; He J; Yin M; Wang Y; Xie F; Bi E; Yang X; Grätzel M; Han L
    Nature; 2017 Oct; 550(7674):92-95. PubMed ID: 28869967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composited Film of Poly(3,4-ethylenedioxythiophene) and Graphene Oxide as Hole Transport Layer in Perovskite Solar Cells.
    Yuan T; Li J; Wang S
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability Improvement of Perovskite Solar Cells by the Moisture-Resistant PMMA:Spiro-OMeTAD Hole Transport Layer.
    Ma S; Pang S; Dong H; Xie X; Liu G; Dong P; Liu D; Zhu W; Xi H; Chen D; Zhang C; Hao Y
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compositional engineering of perovskite materials for high-performance solar cells.
    Jeon NJ; Noh JH; Yang WS; Kim YC; Ryu S; Seo J; Seok SI
    Nature; 2015 Jan; 517(7535):476-80. PubMed ID: 25561177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiro-OMeTAD-Based Hole Transport Layer Engineering toward Stable Perovskite Solar Cells.
    Shen Y; Deng K; Li L
    Small Methods; 2022 Nov; 6(11):e2200757. PubMed ID: 36202752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.