BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30918407)

  • 1. Chemosensory modulation of neural circuits for sodium appetite.
    Lee S; Augustine V; Zhao Y; Ebisu H; Ho B; Kong D; Oka Y
    Nature; 2019 Apr; 568(7750):93-97. PubMed ID: 30918407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dorsal raphe nuclei integrate allostatic information evoked by depletion-induced sodium ingestion.
    BadauĂȘ-Passos D; Godino A; Johnson AK; Vivas L; Antunes-Rodrigues J
    Exp Neurol; 2007 Jul; 206(1):86-94. PubMed ID: 17544397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hindbrain Double-Negative Feedback Mediates Palatability-Guided Food and Water Consumption.
    Gong R; Xu S; Hermundstad A; Yu Y; Sternson SM
    Cell; 2020 Sep; 182(6):1589-1605.e22. PubMed ID: 32841600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Area postrema projects to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei: brainstem sites implicated in sodium appetite regulation.
    Stein MK; Loewy AD
    Brain Res; 2010 Nov; 1359():116-27. PubMed ID: 20816675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aldosterone-sensitive HSD2 neurons in mice.
    Gasparini S; Resch JM; Narayan SV; Peltekian L; Iverson GN; Karthik S; Geerling JC
    Brain Struct Funct; 2019 Jan; 224(1):387-417. PubMed ID: 30343334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel neural pathways control sodium consumption and taste valence.
    Zhang Y; Pool AH; Wang T; Liu L; Kang E; Zhang B; Ding L; Frieda K; Palmiter R; Oka Y
    Cell; 2023 Dec; 186(26):5751-5765.e16. PubMed ID: 37989313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic identification of a neural circuit that suppresses appetite.
    Carter ME; Soden ME; Zweifel LS; Palmiter RD
    Nature; 2013 Nov; 503(7474):111-4. PubMed ID: 24121436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-locus coeruleus neurons in rat and mouse.
    Gasparini S; Resch JM; Gore AM; Peltekian L; Geerling JC
    Am J Physiol Regul Integr Comp Physiol; 2021 Mar; 320(3):R342-R361. PubMed ID: 33296280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential appetite suppression by oral and visceral feedback to the brainstem.
    Ly T; Oh JY; Sivakumar N; Shehata S; La Santa Medina N; Huang H; Liu Z; Fang W; Barnes C; Dundar N; Jarvie BC; Ravi A; Barnhill OK; Li C; Lee GR; Choi J; Jang H; Knight ZA
    Nature; 2023 Dec; 624(7990):130-137. PubMed ID: 37993711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt craving: the psychobiology of pathogenic sodium intake.
    Morris MJ; Na ES; Johnson AK
    Physiol Behav; 2008 Aug; 94(5):709-21. PubMed ID: 18514747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain mechanisms that analyse umami taste and their relation to the control of feeding.
    Rolls ET
    Forum Nutr; 2003; 56():84-7. PubMed ID: 15806811
    [No Abstract]   [Full Text] [Related]  

  • 12. Electrophysiological approaches to unravel the neurobiological basis of appetite and satiety: use of the multielectrode array as a screening strategy.
    Shaban H; O'Connor R; Ovsepian SV; Dinan TG; Cryan JF; Schellekens H
    Drug Discov Today; 2017 Jan; 22(1):31-42. PubMed ID: 27634341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Control and Modulation of Thirst, Sodium Appetite, and Hunger.
    Augustine V; Lee S; Oka Y
    Cell; 2020 Jan; 180(1):25-32. PubMed ID: 31923398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of lateral parabrachial afferent pathways and endocrine responses during sodium appetite regulation.
    Godino A; Margatho LO; Caeiro XE; Antunes-Rodrigues J; Vivas L
    Exp Neurol; 2010 Feb; 221(2):275-84. PubMed ID: 19913016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalin-mediated inhibitory inputs from the bed nucleus of the stria terminalis.
    Kudo T; Konno K; Uchigashima M; Yanagawa Y; Sora I; Minami M; Watanabe M
    Eur J Neurosci; 2014 Jun; 39(11):1796-809. PubMed ID: 24580812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical neural architecture underlying thirst regulation.
    Augustine V; Gokce SK; Lee S; Wang B; Davidson TJ; Reimann F; Gribble F; Deisseroth K; Lois C; Oka Y
    Nature; 2018 Mar; 555(7695):204-209. PubMed ID: 29489747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural circuit mechanism for mechanosensory feedback control of ingestion.
    Kim DY; Heo G; Kim M; Kim H; Jin JA; Kim HK; Jung S; An M; Ahn BH; Park JH; Park HE; Lee M; Lee JW; Schwartz GJ; Kim SY
    Nature; 2020 Apr; 580(7803):376-380. PubMed ID: 32296182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex.
    Geerling JC; Loewy AD
    J Comp Neurol; 2007 Oct; 504(4):379-403. PubMed ID: 17663450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins.
    Fromentin G; Darcel N; Chaumontet C; Marsset-Baglieri A; Nadkarni N; Tomé D
    Nutr Res Rev; 2012 Jun; 25(1):29-39. PubMed ID: 22643031
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.