BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 30918890)

  • 1. Valorization of Char From Biomass Gasification as Catalyst Support in Dry Reforming of Methane.
    Benedetti V; Ail SS; Patuzzi F; Baratieri M
    Front Chem; 2019; 7():119. PubMed ID: 30918890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane.
    Khairudin NF; Mohammadi M; Mohamed AR
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29157-29176. PubMed ID: 33550559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Ni/dolomite pellet catalyst on gas distribution from cassava rhizome gasification with a modular fixed-bed gasifier.
    Sricharoenchaikul V; Atong D; Sornkade P; Nisamaneenate J
    Environ Technol; 2017 May; 38(9):1176-1183. PubMed ID: 27540772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Gasification and Reforming of Residual Biomass in a Bench Scale System with Low Cost Catalysts.
    Garcia L; Cordoba M; Dosso L; Nardi F; Vera C; Quiroga M; Busto M; Badano J
    Chempluschem; 2023 Dec; 88(12):e202300376. PubMed ID: 37857584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4.
    Zhang G; Su A; Du Y; Qu J; Xu Y
    J Colloid Interface Sci; 2014 Nov; 433():149-155. PubMed ID: 25127295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production from biomass gasification using biochar as a catalyst/support.
    Yao D; Hu Q; Wang D; Yang H; Wu C; Wang X; Chen H
    Bioresour Technol; 2016 Sep; 216():159-64. PubMed ID: 27240230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and Activity of Rhodium Promoted Nickel-Based Catalysts in Dry Reforming of Methane.
    Saleh J; Al-Fatesh AS; Ibrahim AA; Frusteri F; Abasaeed AE; Fakeeha AH; Albaqi F; Anojaidi K; Alreshaidan SB; Albinali I; Al-Rabiah AA; Bagabas A
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous Acidic Catalysts Synthesis from Dual-Stage and Rising Co-Current Gasification Char: Application for FAME Production from Waste Cooking Oil.
    Ahmad J; Rashid U; Patuzzi F; Alamoodi N; Choong TSY; Soltani S; Ngamcharussrivichai C; Nehdi IA; Baratieri M
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane.
    Li L; Chen J; Zhang Y; Sun J; Zou G
    Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Adding Gadolinium Oxide Promoter on Nickel Catalyst over Yttrium-Zirconium Oxide Support for Dry Reforming of Methane.
    Alreshaidan SB; Al-Fatesh A; Lanre MS; Alanazi YM; Ibrahim AA; Fakeeha AH; Albaqi F; Anojaidi K; Bagabas A
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sinter-resistant Rh nanoparticles supported on γ-Al
    Chu S; Cai Z; Wang M; Zheng Y; Wang Y; Zhou Z; Weng W
    Nanoscale; 2020 Oct; 12(40):20922-20932. PubMed ID: 33090164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane.
    Aghamohammadi S; Haghighi M; Karimipour S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4872-82. PubMed ID: 23901507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic performance of activated lignite chars on biomass tar cracking.
    Li C; Zhang H; Gong X; Zhang Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57331-57339. PubMed ID: 36964466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production from CO
    Kurdi AN; Ibrahim AA; Al-Fatesh AS; Alquraini AA; Abasaeed AE; Fakeeha AH
    RSC Adv; 2022 Mar; 12(17):10846-10854. PubMed ID: 35424981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of high-performance nickel-based catalysts for production of hydrogen and carbon nanotubes from biogas.
    Saconsint S; Sae-Tang N; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S
    Sci Rep; 2022 Sep; 12(1):15195. PubMed ID: 36071147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts.
    Chein R; Yang Z
    ACS Omega; 2019 Dec; 4(25):20911-20922. PubMed ID: 31867481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane.
    Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A
    Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yttria Modified ZrO
    Fakeeha AH; Al Fatesh AS; Ibrahim AA; Kurdi AN; Abasaeed AE
    ACS Omega; 2021 Jan; 6(2):1280-1288. PubMed ID: 33490787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of NiO doped on alkaline sludge from waste photovoltaic industries for catalytic dry reforming of methane.
    Shamsuddin MR; Teo SH; Azmi TSMT; Lahuri AH; Taufiq-Yap YH
    Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38635095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.