BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30918891)

  • 1. Human Serine Racemase: Key Residues/Active Site Motifs and Their Relation to Enzyme Function.
    Graham DL; Beio ML; Nelson DL; Berkowitz DB
    Front Mol Biosci; 2019; 6():8. PubMed ID: 30918891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information-Rich, Dual-Function
    Ramos de Dios SM; Hass JL; Graham DL; Kumar N; Antony AE; Morton MD; Berkowitz DB
    J Am Chem Soc; 2023 Feb; 145(5):3158-3174. PubMed ID: 36696670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP binding to human serine racemase is cooperative and modulated by glycine.
    Marchetti M; Bruno S; Campanini B; Peracchi A; Mai N; Mozzarelli A
    FEBS J; 2013 Nov; 280(22):5853-63. PubMed ID: 23992455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational flexibility within the small domain of human serine racemase.
    Koulouris CR; Bax BD; Atack JR; Roe SM
    Acta Crystallogr F Struct Biol Commun; 2020 Feb; 76(Pt 2):65-73. PubMed ID: 32039887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Energy Landscape of Human Serine Racemase.
    Raboni S; Marchetti M; Faggiano S; Campanini B; Bruno S; Marchesani F; Margiotta M; Mozzarelli A
    Front Mol Biosci; 2018; 5():112. PubMed ID: 30687716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mechanism of serine racemase from Dictyostelium discoideum.
    Ito T; Maekawa M; Hayashi S; Goto M; Hemmi H; Yoshimura T
    Amino Acids; 2013 Mar; 44(3):1073-84. PubMed ID: 23269477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function.
    Nelson DL; Applegate GA; Beio ML; Graham DL; Berkowitz DB
    J Biol Chem; 2017 Aug; 292(34):13986-14002. PubMed ID: 28696262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvate.
    Strísovský K; Jirásková J; Barinka C; Majer P; Rojas C; Slusher BS; Konvalinka J
    FEBS Lett; 2003 Jan; 535(1-3):44-8. PubMed ID: 12560076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-amino acids in the brain: the biochemistry of brain serine racemase.
    Baumgart F; Rodríguez-Crespo I
    FEBS J; 2008 Jul; 275(14):3538-45. PubMed ID: 18564178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of human serine racemase activity and dynamics by halides, ATP and malonate.
    Marchetti M; Bruno S; Campanini B; Bettati S; Peracchi A; Mozzarelli A
    Amino Acids; 2015 Jan; 47(1):163-73. PubMed ID: 25331425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activity.
    Strísovský K; Jirásková J; Mikulová A; Rulísek L; Konvalinka J
    Biochemistry; 2005 Oct; 44(39):13091-100. PubMed ID: 16185077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study.
    Vorlová B; Nachtigallová D; Jirásková-Vaníčková J; Ajani H; Jansa P; Rezáč J; Fanfrlík J; Otyepka M; Hobza P; Konvalinka J; Lepšík M
    Eur J Med Chem; 2015 Jan; 89():189-97. PubMed ID: 25462239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxamic acids as a novel family of serine racemase inhibitors: mechanistic analysis reveals different modes of interaction with the pyridoxal-5'-phosphate cofactor.
    Hoffman HE; Jirásková J; Cígler P; Sanda M; Schraml J; Konvalinka J
    J Med Chem; 2009 Oct; 52(19):6032-41. PubMed ID: 19791805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human serine racemase is nitrosylated at multiple sites.
    Marchesani F; Bruno S; Paredi G; Raboni S; Campanini B; Mozzarelli A
    Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):813-821. PubMed ID: 29410194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serine racemase interaction with N-methyl-D-aspartate receptors antagonist reveals potential alternative target of chronic pain treatment: Molecular docking study.
    Laksono RM; Kalim H; Rohman MS; Widodo N; Ahmad MR
    J Adv Pharm Technol Res; 2022; 13(3):232-237. PubMed ID: 35935687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal ion dependency of serine racemase from Dictyostelium discoideum.
    Ito T; Murase H; Maekawa M; Goto M; Hayashi S; Saito H; Maki M; Hemmi H; Yoshimura T
    Amino Acids; 2012 Oct; 43(4):1567-76. PubMed ID: 22311068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the reaction mechanism and intermediate stabilization in mammalian serine racemase using multiscale quantum-classical simulations.
    Nitoker N; Major DT
    Biochemistry; 2015 Jan; 54(2):516-27. PubMed ID: 25493718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of human serine racemase, an emerging target for medicinal chemistry.
    Jirásková-Vaníčková J; Ettrich R; Vorlová B; Hoffman HE; Lepšík M; Jansa P; Konvalinka J
    Curr Drug Targets; 2011 Jun; 12(7):1037-55. PubMed ID: 21291385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel role of serine racemase in anti-apoptosis and metabolism.
    Talukdar G; Inoue R; Yoshida T; Ishimoto T; Yaku K; Nakagawa T; Mori H
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3378-3387. PubMed ID: 27585868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and expression of the pyridoxal 5'-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme.
    Abe K; Takahashi S; Muroki Y; Kera Y; Yamada RH
    J Biochem; 2006 Feb; 139(2):235-44. PubMed ID: 16452311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.