These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 30918929)
1. Rethinking the X Tasi DA; Fábián Z; Czakó G Phys Chem Chem Phys; 2019 Apr; 21(15):7924-7931. PubMed ID: 30918929 [TBL] [Abstract][Full Text] [Related]
2. Benchmark ab Initio Characterization of the Inversion and Retention Pathways of the OH Tasi DA; Fábián Z; Czakó G J Phys Chem A; 2018 Jul; 122(26):5773-5780. PubMed ID: 29878774 [TBL] [Abstract][Full Text] [Related]
3. High-Level Systematic Ab Initio Comparison of Carbon- and Silicon-Centered S Dékány AÁ; Kovács GZ; Czakó G J Phys Chem A; 2021 Nov; 125(44):9645-9657. PubMed ID: 34709818 [TBL] [Abstract][Full Text] [Related]
4. Theoretical investigation of the S Li C; Xin X; Wang D Phys Chem Chem Phys; 2021 Oct; 23(40):23267-23273. PubMed ID: 34632471 [TBL] [Abstract][Full Text] [Related]
5. Benchmark ab Initio Characterization of the Complex Potential Energy Surfaces of the X Hajdu B; Czakó G J Phys Chem A; 2018 Feb; 122(7):1886-1895. PubMed ID: 29360360 [TBL] [Abstract][Full Text] [Related]
6. A benchmark ab initio study of the complex potential energy surfaces of the OH Tasi DA; Tokaji C; Czakó G Phys Chem Chem Phys; 2021 Jun; 23(24):13526-13534. PubMed ID: 34132273 [TBL] [Abstract][Full Text] [Related]
7. Benchmark Tasi DA; Czakó G Phys Chem Chem Phys; 2024 Jun; 26(22):16048-16059. PubMed ID: 38779842 [TBL] [Abstract][Full Text] [Related]
8. S Kerekes Z; Tasi DA; Czakó G J Phys Chem A; 2022 Feb; 126(6):889-900. PubMed ID: 35107284 [TBL] [Abstract][Full Text] [Related]
9. Double-inversion mechanisms of the X⁻ + CH₃Y [X,Y = F, Cl, Br, I] SN2 reactions. Szabó I; Czakó G J Phys Chem A; 2015 Mar; 119(12):3134-40. PubMed ID: 25746441 [TBL] [Abstract][Full Text] [Related]
10. Computational Studies of Coinage Metal Anion M Wang F; Ji X; Ying F; Zhang J; Zhao C; Xie J Molecules; 2022 Jan; 27(1):. PubMed ID: 35011542 [TBL] [Abstract][Full Text] [Related]
11. Model identity SN2 reactions CH3X + X- (X = F, Cl, CN, OH, SH, NH2, PH2): Marcus theory analyzed. Gonzales JM; Allen WD; Schaefer HF J Phys Chem A; 2005 Nov; 109(46):10613-28. PubMed ID: 16834318 [TBL] [Abstract][Full Text] [Related]
12. Investigating the role of halogen-bonded complexes in microsolvated Y Ji X; Zhao C; Xie J Phys Chem Chem Phys; 2021 Mar; 23(11):6349-6360. PubMed ID: 33587073 [TBL] [Abstract][Full Text] [Related]
13. Identification of atomic-level mechanisms for gas-phase X- + CH3Y SN2 reactions by combined experiments and simulations. Xie J; Otto R; Mikosch J; Zhang J; Wester R; Hase WL Acc Chem Res; 2014 Oct; 47(10):2960-9. PubMed ID: 25120237 [TBL] [Abstract][Full Text] [Related]
14. Definitive ab initio studies of model SN2 reactions CH(3)X+F- (X=F, Cl, CN, OH, SH, NH(2), PH(2)). Gonzales JM; Pak C; Cox RS; Allen WD; Schaefer III HF; Császár AG; Tarczay G Chemistry; 2003 May; 9(10):2173-92. PubMed ID: 12772292 [TBL] [Abstract][Full Text] [Related]
15. On the choice of the ab initio level of theory for potential energy surface developments. Czakó G; Szabó I; Telekes H J Phys Chem A; 2014 Jan; 118(3):646-54. PubMed ID: 24377787 [TBL] [Abstract][Full Text] [Related]
16. Detailed benchmark ab initio mapping of the potential energy surfaces of the X + C Papp D; Gruber B; Czakó G Phys Chem Chem Phys; 2018 Dec; 21(1):396-408. PubMed ID: 30525131 [TBL] [Abstract][Full Text] [Related]
17. Reaction mechanism conversion induced by the contest of nucleophile and leaving group. Zhao S; Fu G; Zhen W; Yang L; Sun J; Zhang J Phys Chem Chem Phys; 2022 Oct; 24(39):24146-24154. PubMed ID: 36168813 [TBL] [Abstract][Full Text] [Related]
18. Nucleophile Effects on the E2/S Zhao S; Fu G; Zhen W; Wang H; Liu M; Yang L; Zhang J J Phys Chem A; 2023 Apr; 127(15):3381-3389. PubMed ID: 37039624 [TBL] [Abstract][Full Text] [Related]