These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 30919353)

  • 21. A NAV2729-sensitive mechanism promotes adrenergic smooth muscle contraction and growth of stromal cells in the human prostate.
    Yu Q; Gratzke C; Wang R; Li B; Kuppermann P; Herlemann A; Tamalunas A; Wang Y; Rutz B; Ciotkowska A; Wang X; Strittmatter F; Waidelich R; Stief CG; Hennenberg M
    J Biol Chem; 2019 Aug; 294(32):12231-12249. PubMed ID: 31243101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanoactivation of the angiotensin II type 1 receptor induces β-arrestin-biased signaling through Gα
    Wang J; Hanada K; Gareri C; Rockman HA
    J Cell Biochem; 2018 Apr; 119(4):3586-3597. PubMed ID: 29231251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A fluorescence resonance energy transfer activation sensor for Arf6.
    Hall B; McLean MA; Davis K; Casanova JE; Sligar SG; Schwartz MA
    Anal Biochem; 2008 Mar; 374(2):243-9. PubMed ID: 18162163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GGA proteins associate with Golgi membranes through interaction between their GGAH domains and ADP-ribosylation factors.
    Takatsu H; Yoshino K; Toda K; Nakayama K
    Biochem J; 2002 Jul; 365(Pt 2):369-78. PubMed ID: 11950392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PAG3/Papalpha/KIAA0400, a GTPase-activating protein for ADP-ribosylation factor (ARF), regulates ARF6 in Fcgamma receptor-mediated phagocytosis of macrophages.
    Uchida H; Kondo A; Yoshimura Y; Mazaki Y; Sabe H
    J Exp Med; 2001 Apr; 193(8):955-66. PubMed ID: 11304556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential localization and function of ADP-ribosylation factor-6 in anergic human T cells: a potential marker for their identification.
    Tzachanis D; Appleman LJ; Van Puijenbroek AA; Berezovskaya A; Nadler LM; Boussiotis VA
    J Immunol; 2003 Aug; 171(4):1691-6. PubMed ID: 12902467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of ARHGAP24 in ADP Ribosylation Factor 6 (ARF6)-dependent Pseudopod Formation in Human Breast Carcinoma Cells.
    Uehara S; Saito K; Asami H; Ohta Y
    Anticancer Res; 2017 Sep; 37(9):4837-4844. PubMed ID: 28870903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methods to Investigate β-Arrestin-Mediated Regulation of GPCR Function in Human Airway Smooth Muscle.
    Pera T; Penn RB
    Methods Mol Biol; 2019; 1957():69-82. PubMed ID: 30919347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods to Study the Roles of β-Arrestins in Meningococcal Signaling.
    Virion Z; Marullo S; Coureuil M
    Methods Mol Biol; 2019; 1957():325-334. PubMed ID: 30919363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arfophilin is a common target of both class II and class III ADP-ribosylation factors.
    Shin OH; Couvillon AD; Exton JH
    Biochemistry; 2001 Sep; 40(36):10846-52. PubMed ID: 11535061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endothelin-1 promotes migration of endothelial cells through the activation of ARF6 and the regulation of FAK activity.
    Daher Z; Noël J; Claing A
    Cell Signal; 2008 Dec; 20(12):2256-65. PubMed ID: 18814847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arf GTPase interplay with Rho GTPases in regulation of the actin cytoskeleton.
    Singh V; Davidson AC; Hume PJ; Humphreys D; Koronakis V
    Small GTPases; 2019 Nov; 10(6):411-418. PubMed ID: 28524754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization and regulation of phospholipase D2 by ARF6.
    Hiroyama M; Exton JH
    J Cell Biochem; 2005 May; 95(1):149-64. PubMed ID: 15759270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. dAsap regulates cellular protrusions via an Arf6-dependent actin regulatory pathway in S2R+ cells.
    Kushwaha S; Mallik B; Bisht A; Mushtaq Z; Pippadpally S; Chandra N; Das S; Ratnaparkhi G; Kumar V
    FEBS Lett; 2024 Jun; 598(12):1491-1505. PubMed ID: 38862211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ARF6-dependent activation of ERK and Rac1 modulates epithelial tubule development.
    Tushir JS; D'Souza-Schorey C
    EMBO J; 2007 Apr; 26(7):1806-19. PubMed ID: 17363898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of curcumin in PLD activation by Arf6-cytohesin1 signaling axis in U46619-stimulated pulmonary artery smooth muscle cells.
    Chakraborti S; Sarkar J; Bhuyan R; Chakraborti T
    Mol Cell Biochem; 2018 Jan; 438(1-2):97-109. PubMed ID: 28780751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of the GTPase ARF6 regulates invasion of human vascular smooth muscle cells by stimulating MMP14 activity.
    Fiola-Masson E; Artigalas J; Campbell S; Claing A
    Sci Rep; 2022 Jun; 12(1):9532. PubMed ID: 35680971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a fast cycling ADP-ribosylation factor 6 mutant.
    Santy LC
    J Biol Chem; 2002 Oct; 277(43):40185-8. PubMed ID: 12218044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methods to Investigate the Roles of β-Arrestin-Dependent RalGDS Activation in GPCR-Stimulated Membrane Blebbing.
    Ferguson SSG
    Methods Mol Biol; 2019; 1957():169-175. PubMed ID: 30919354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. β-Arrestins: modulators of small GTPase activation and function.
    Claing A
    Prog Mol Biol Transl Sci; 2013; 118():149-74. PubMed ID: 23764053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.