These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 30919357)
1. Proteomic Analysis of the β-Arrestin Interactomes. Zhao Y; Xiao K Methods Mol Biol; 2019; 1957():217-232. PubMed ID: 30919357 [TBL] [Abstract][Full Text] [Related]
2. Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Xiao K; McClatchy DB; Shukla AK; Zhao Y; Chen M; Shenoy SK; Yates JR; Lefkowitz RJ Proc Natl Acad Sci U S A; 2007 Jul; 104(29):12011-6. PubMed ID: 17620599 [TBL] [Abstract][Full Text] [Related]
3. Elucidating structural and molecular mechanisms of β-arrestin-biased agonism at GPCRs via MS-based proteomics. Xiao K; Sun J Cell Signal; 2018 Jan; 41():56-64. PubMed ID: 28939107 [TBL] [Abstract][Full Text] [Related]
4. A Mass Spectrometry-Based Structural Assay for Activation-Dependent Conformational Changes in β-Arrestins. Zhao Y; Xiao K Methods Mol Biol; 2019; 1957():293-308. PubMed ID: 30919361 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a Protein Interactome by Co-Immunoprecipitation and Shotgun Mass Spectrometry. Maccarrone G; Bonfiglio JJ; Silberstein S; Turck CW; Martins-de-Souza D Methods Mol Biol; 2017; 1546():223-234. PubMed ID: 27896772 [TBL] [Abstract][Full Text] [Related]
9. Comparative interactome analysis of α-arrestin families in human and Lee KT; Pranoto IKA; Kim SY; Choi HJ; To NB; Chae H; Lee JY; Kim JE; Kwon YV; Nam JW Elife; 2024 Jan; 12():. PubMed ID: 38270169 [TBL] [Abstract][Full Text] [Related]
10. A Methodology for Comprehensive Analysis of Toll-Like Receptor Signaling in Macrophages. Koppenol-Raab M; Nita-Lazar A Methods Mol Biol; 2017; 1636():301-312. PubMed ID: 28730487 [TBL] [Abstract][Full Text] [Related]
11. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE). Stacey RG; Skinnider MA; Scott NE; Foster LJ BMC Bioinformatics; 2017 Oct; 18(1):457. PubMed ID: 29061110 [TBL] [Abstract][Full Text] [Related]
13. Identifying novel protein interactions: Proteomic methods, optimisation approaches and data analysis pipelines. Carneiro DG; Clarke T; Davies CC; Bailey D Methods; 2016 Feb; 95():46-54. PubMed ID: 26320829 [TBL] [Abstract][Full Text] [Related]
14. Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. Heller M; Mattou H; Menzel C; Yao X J Am Soc Mass Spectrom; 2003 Jul; 14(7):704-18. PubMed ID: 12837592 [TBL] [Abstract][Full Text] [Related]
16. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation. Borisova ME; Wagner SA; Beli P Methods Mol Biol; 2017; 1599():215-227. PubMed ID: 28477122 [TBL] [Abstract][Full Text] [Related]
17. LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer. Zhang W; Zhong T; Chen Y J Proteomics; 2017 Jan; 152():172-180. PubMed ID: 27826076 [TBL] [Abstract][Full Text] [Related]
18. SILAC labeling of yeast for the study of membrane protein complexes. Oeljeklaus S; Schummer A; Suppanz I; Warscheid B Methods Mol Biol; 2014; 1188():23-46. PubMed ID: 25059602 [TBL] [Abstract][Full Text] [Related]
19. Identification of Factors Produced and Secreted by Mesenchymal Stromal Cells with the SILAC Method. Rocha B; Calamia V; Blanco FJ; Ruiz-Romero C Methods Mol Biol; 2016; 1416():551-65. PubMed ID: 27236695 [TBL] [Abstract][Full Text] [Related]