BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30919362)

  • 1. Probing Arrestin Function Using Intramolecular FlAsH-BRET Biosensors.
    Strungs EG; Luttrell LM; Lee MH
    Methods Mol Biol; 2019; 1957():309-322. PubMed ID: 30919362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational biosensors reveal allosteric interactions between heterodimeric AT1 angiotensin and prostaglandin F2α receptors.
    Sleno R; Devost D; Pétrin D; Zhang A; Bourque K; Shinjo Y; Aoki J; Inoue A; Hébert TE
    J Biol Chem; 2017 Jul; 292(29):12139-12152. PubMed ID: 28584054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET.
    Cao Y; Namkung Y; Laporte SA
    Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A
    Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Arrestin-2 BRET Biosensors Detect Different β-Arrestin-2 Conformations in Interaction with GPCRs.
    Oishi A; Dam J; Jockers R
    ACS Sens; 2020 Jan; 5(1):57-64. PubMed ID: 31849219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying biased signaling in GPCRs using BRET-based biosensors.
    Namkung Y; Radresa O; Armando S; Devost D; Beautrait A; Le Gouill C; Laporte SA
    Methods; 2016 Jan; 92():5-10. PubMed ID: 25890247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and construction of conformational biosensors to monitor ion channel activation: A prototype FlAsH/BRET-approach to Kir3 channels.
    Robertson DN; Sleno R; Nagi K; Pétrin D; Hébert TE; Pineyro G
    Methods; 2016 Jan; 92():19-35. PubMed ID: 26210401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET.
    Namkung Y; Le Gouill C; Lukashova V; Kobayashi H; Hogue M; Khoury E; Song M; Bouvier M; Laporte SA
    Nat Commun; 2016 Jul; 7():12178. PubMed ID: 27397672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors.
    Namkung Y; LeGouill C; Kumar S; Cao Y; Teixeira LB; Lukasheva V; Giubilaro J; Simões SC; Longpré JM; Devost D; Hébert TE; Piñeyro G; Leduc R; Costa-Neto CM; Bouvier M; Laporte SA
    Sci Signal; 2018 Dec; 11(559):. PubMed ID: 30514808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greatly enhanced detection of a volatile ligand at femtomolar levels using bioluminescence resonance energy transfer (BRET).
    Dacres H; Wang J; Leitch V; Horne I; Anderson AR; Trowell SC
    Biosens Bioelectron; 2011 Nov; 29(1):119-24. PubMed ID: 21873043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions.
    Lee MH; Appleton KM; Strungs EG; Kwon JY; Morinelli TA; Peterson YK; Laporte SA; Luttrell LM
    Nature; 2016 Mar; 531(7596):665-8. PubMed ID: 27007854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of β-Arrestin-Mediated G Protein-Coupled Receptor Ubiquitination Using BRET.
    Nagi K; Shenoy SK
    Methods Mol Biol; 2019; 1957():93-104. PubMed ID: 30919349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.
    Donthamsetti P; Quejada JR; Javitch JA; Gurevich VV; Lambert NA
    Curr Protoc Pharmacol; 2015 Sep; 70():2.14.1-2.14.14. PubMed ID: 26331887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring TRPC7 Conformational Changes by BRET Following GPCR Activation.
    Pétigny C; Dumont AA; Giguère H; Collette A; Holleran BJ; Iftinca M; Altier C; Besserer-Offroy É; Auger-Messier M; Leduc R
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation- and activation-based BRET sensors differentially report on GPCR-G protein coupling.
    Wright SC; Avet C; Gaitonde SA; Muneta-Arrate I; Le Gouill C; Hogue M; Breton B; Koutsilieri S; Alarcia RD; Héroux M; Lauschke VM; Bouvier M
    Sci Signal; 2024 Jun; 17(841):eadi4747. PubMed ID: 38889226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes.
    Borroto-Escuela DO; Flajolet M; Agnati LF; Greengard P; Fuxe K
    Methods Cell Biol; 2013; 117():141-64. PubMed ID: 24143976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET.
    Charest PG; Terrillon S; Bouvier M
    EMBO Rep; 2005 Apr; 6(4):334-40. PubMed ID: 15776020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing BRET-based conformational biosensors for G protein-coupled receptors.
    Sleno R; Pétrin D; Devost D; Goupil E; Zhang A; Hébert TE
    Methods; 2016 Jan; 92():11-8. PubMed ID: 25962643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Conformational Profiling of GPCRs with CRISPR/Cas9 Gene Editing Approaches.
    Bourque K; Devost D; Inoue A; Hébert TE
    Methods Mol Biol; 2019; 1947():169-182. PubMed ID: 30969416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Bystander BRET (ebBRET) Biosensors as Biophysical Tools to Map the Signaling Profile of Neuropsychiatric Drugs Targeting GPCRs.
    Gaitonde SA; Bouvier M
    Methods Mol Biol; 2023; 2687():15-30. PubMed ID: 37464159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.