BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3091937)

  • 1. Structure of lysine adducts with 16 alpha-hydroxyestrone and cortisol.
    Bucala R; Ulrich PC; Chait BT; Bencsath FA; Cerami A
    J Steroid Biochem; 1986 Jul; 25(1):127-33. PubMed ID: 3091937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of covalent adducts between cortisol and 16 alpha-hydroxyestrone and protein: possible role in the pathogenesis of cortisol toxicity and systemic lupus erythematosus.
    Bucala R; Fishman J; Cerami A
    Proc Natl Acad Sci U S A; 1982 May; 79(10):3320-4. PubMed ID: 6808508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the adduct of 16 alpha-hydroxyestrone with a primary amine: evidence for the Heyns rearrangement of steroidal D-ring alpha-hydroxyimines.
    Miyairi S; Ichikawa T; Nambara T
    Steroids; 1991 Jul; 56(7):361-6. PubMed ID: 1780952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 16α-Hydroxyestrone: Mass Spectrometry-Based Methodologies for the Identification of Covalent Adducts Formed with Blood Proteins.
    Charneira C; Nunes J; Antunes AMM
    Chem Res Toxicol; 2020 Aug; 33(8):2147-2156. PubMed ID: 32692160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of antisera to the addition product formed by the nonenzymatic reaction of 16 alpha-hydroxyestrone with albumin.
    Bucala R; Cerami A
    Mol Immunol; 1983 Dec; 20(12):1289-92. PubMed ID: 6656775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction of 16 alpha-hydroxyestrone with erythrocytes in vitro and in vivo.
    Bucala R; Fishman J; Cerami A
    Eur J Biochem; 1984 May; 140(3):593-8. PubMed ID: 6723653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of metal ions on the stable adduct formation of 16alpha-hydroxyestrone with a primary amine via the Heyns rearrangement.
    Miyairi S; Maeda K; Oe T; Kato T; Naganuma A
    Steroids; 1999 Apr; 64(4):252-8. PubMed ID: 10399881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of histones with estrogens. Covalent adduct formation with 16 alpha-hydroxyestrone.
    Yu SC; Fishman J
    Biochemistry; 1985 Dec; 24(27):8017-21. PubMed ID: 4092052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p-Hydroxyphenylacetaldehyde, the major product of L-tyrosine oxidation by the myeloperoxidase-H2O2-chloride system of phagocytes, covalently modifies epsilon-amino groups of protein lysine residues.
    Hazen SL; Gaut JP; Hsu FF; Crowley JR; d'Avignon A; Heinecke JW
    J Biol Chem; 1997 Jul; 272(27):16990-8. PubMed ID: 9202012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical implications of acetaldehyde adducts with hemoglobin.
    Peterson CM; Nguyen LB
    Prog Clin Biol Res; 1985; 183():19-30. PubMed ID: 3901019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for predicting acyl glucuronide reactivity via Schiff base formation: development of rapidly formed peptide adducts for LC/MS/MS measurements.
    Wang J; Davis M; Li F; Azam F; Scatina J; Talaat R
    Chem Res Toxicol; 2004 Sep; 17(9):1206-16. PubMed ID: 15377154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible and covalent binding of 5-(hydroxymethyl)-2-furaldehyde (HMF) with lysine and selected amino acids.
    Nikolov PY; Yaylayan VA
    J Agric Food Chem; 2011 Jun; 59(11):6099-107. PubMed ID: 21557617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural assignment for a stable acetaldehyde-lysine adduct.
    Braun KP; Cody RB; Jones DR; Peterson CM
    J Biol Chem; 1995 May; 270(19):11263-6. PubMed ID: 7744761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein modification by acrolein: formation and stability of cysteine adducts.
    Cai J; Bhatnagar A; Pierce WM
    Chem Res Toxicol; 2009 Apr; 22(4):708-16. PubMed ID: 19231900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the lysyl adducts formed from prostaglandin H2 via the levuglandin pathway.
    Boutaud O; Brame CJ; Salomon RG; Roberts LJ; Oates JA
    Biochemistry; 1999 Jul; 38(29):9389-96. PubMed ID: 10413514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gramicidin S: a peptide model for protein glycation and reversal of glycation using nucleophilic amines.
    Shakkottai VG; Sudha R; Balaram P
    J Pept Res; 2002 Aug; 60(2):112-20. PubMed ID: 12102724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent binding of acetaldehyde to proteins: participation of lysine residues.
    Tuma DJ; Newman MR; Donohue TM; Sorrell MF
    Alcohol Clin Exp Res; 1987 Dec; 11(6):579-84. PubMed ID: 3124658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of the major serum albumin adduct formed by aflatoxin B1 in vivo in rats.
    Sabbioni G; Skipper PL; Büchi G; Tannenbaum SR
    Carcinogenesis; 1987 Jun; 8(6):819-24. PubMed ID: 3111739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of modification sites on human serum albumin and human hemoglobin adducts with houttuynin using liquid chromatography coupled with mass spectrometry.
    Deng Z; Zhong D; Chen X
    Biomed Chromatogr; 2012 Nov; 26(11):1377-85. PubMed ID: 22334394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable acetaldehyde adducts: structural characterization of acetaldehyde adducts of human hemoglobin N-terminal beta-globin chain peptides.
    Braun KP; Pavlovich JG; Jones DR; Peterson CM
    Alcohol Clin Exp Res; 1997 Feb; 21(1):40-3. PubMed ID: 9046371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.