BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30919631)

  • 1. Three-Dimensionally Reinforced Freestanding Cathode for High-Energy Room-Temperature Sodium-Sulfur Batteries.
    Ghosh A; Kumar A; Roy A; Panda MR; Kar M; MacFarlane DR; Mitra S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14101-14109. PubMed ID: 30919631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.
    Ghosh A; Manjunatha R; Kumar R; Mitra S
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33775-33785. PubMed ID: 27960357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries.
    Peng H; Wang X; Zhao Y; Tan T; Bakenov Z; Zhang Y
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries.
    Li Y; Cai Q; Wang L; Li Q; Peng X; Gao B; Huo K; Chu PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23784-92. PubMed ID: 27552961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Freestanding and Long-Life Sodium-Selenium Cathode by Encapsulation of Selenium into Microporous Multichannel Carbon Nanofibers.
    Yuan B; Sun X; Zeng L; Yu Y; Wang Q
    Small; 2018 Mar; 14(9):. PubMed ID: 29280299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable Room-Temperature Sodium-Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive.
    Liu D; Li Z; Li X; Chen X; Li Z; Yuan L; Huang Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6658-6666. PubMed ID: 35076203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur-Embedded FeS
    Mwizerwa JP; Zhang Q; Han F; Wan H; Cai L; Wang C; Yao X
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18519-18525. PubMed ID: 32216290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel Hollow Spheres Concatenated by Nitrogen-Doped Carbon Fibers for Enhancing Electrochemical Kinetics of Sodium-Sulfur Batteries.
    Guo B; Du W; Yang T; Deng J; Liu D; Qi Y; Jiang J; Bao SJ; Xu M
    Adv Sci (Weinh); 2020 Feb; 7(4):1902617. PubMed ID: 32099760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metalophilic Gel Polymer Electrolyte for in Situ Tailoring Cathode/Electrolyte Interface of High-Nickel Oxide Cathodes in Quasi-Solid-State Li-Ion Batteries.
    Sun YY; Wang YY; Li GR; Liu S; Gao XP
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14830-14839. PubMed ID: 30945528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li
    Xu R; Wu Z; Zhang S; Wang X; Xia Y; Xia X; Huang X; Tu J
    Chemistry; 2017 Oct; 23(56):13950-13956. PubMed ID: 28722816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries.
    Yu X; Manthiram A
    J Phys Chem Lett; 2014 Jun; 5(11):1943-7. PubMed ID: 26273877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies to mitigate the shuttle effect in room temperature sodium-sulfur batteries: improving cathode materials.
    Wang Y; Chai J; Li Y; Li Q; Du J; Chen Z; Wang L; Tang B
    Dalton Trans; 2023 Feb; 52(9):2548-2560. PubMed ID: 36752364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freestanding Na
    Chang W; Zhang XY; Qu J; Chen Z; Zhang YJ; Sui Y; Ma XF; Yu ZZ
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41419-41428. PubMed ID: 32812745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling a Stable Room-Temperature Sodium-Sulfur Battery Cathode by Building Heterostructures in Multichannel Carbon Fibers.
    Ye X; Ruan J; Pang Y; Yang J; Liu Y; Huang Y; Zheng S
    ACS Nano; 2021 Mar; 15(3):5639-5648. PubMed ID: 33666431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries.
    Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H
    Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembling Hollow Carbon Nanobeads into Double-Shell Microspheres as a Hierarchical Sulfur Host for Sustainable Room-Temperature Sodium-Sulfur Batteries.
    Zhang L; Zhang B; Dou Y; Wang Y; Al-Mamun M; Hu X; Liu H
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20422-20428. PubMed ID: 29762005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance All-Inorganic Solid-State Sodium-Sulfur Battery.
    Yue J; Han F; Fan X; Zhu X; Ma Z; Yang J; Wang C
    ACS Nano; 2017 May; 11(5):4885-4891. PubMed ID: 28459546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.