These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 30919768)
1. Chickpea (Cicer arietinum L.) Lectin Exhibit Inhibition of ACE-I, α-amylase and α-glucosidase Activity. Bhagyawant SS; Narvekar DT; Gupta N; Bhadkaria A; Gautam AK; Srivastava N Protein Pept Lett; 2019; 26(7):494-501. PubMed ID: 30919768 [TBL] [Abstract][Full Text] [Related]
2. Molecular Weight Affected Antioxidant, Hypoglycemic and Hypotensive Activities of Cold Water Extract from Pleurotus citrinopileatus. Chen PH; Weng YM; Lin SM; Yu ZR; Wang BJ J Food Sci; 2017 Oct; 82(10):2456-2461. PubMed ID: 28850664 [TBL] [Abstract][Full Text] [Related]
3. Antioxidant, Antidiabetic, and Antihypertensive Properties of Echinacea purpurea Flower Extract and Caffeic Acid Derivatives Using In Vitro Models. Chiou SY; Sung JM; Huang PW; Lin SD J Med Food; 2017 Feb; 20(2):171-179. PubMed ID: 28061036 [TBL] [Abstract][Full Text] [Related]
4. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. McCue P; Kwon YI; Shetty K Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931 [TBL] [Abstract][Full Text] [Related]
5. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. Deo P; Hewawasam E; Karakoulakis A; Claudie DJ; Nelson R; Simpson BS; Smith NM; Semple SJ BMC Complement Altern Med; 2016 Nov; 16(1):435. PubMed ID: 27809834 [TBL] [Abstract][Full Text] [Related]
6. Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates. Quintero-Soto MF; Chávez-Ontiveros J; Garzón-Tiznado JA; Salazar-Salas NY; Pineda-Hidalgo KV; Delgado-Vargas F; López-Valenzuela JA J Food Sci; 2021 Jul; 86(7):2962-2977. PubMed ID: 34076269 [TBL] [Abstract][Full Text] [Related]
7. Standardized Emblica officinalis fruit extract inhibited the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase-4 and displayed antioxidant potential. Majeed M; Majeed S; Mundkur L; Nagabhushanam K; Arumugam S; Beede K; Ali F J Sci Food Agric; 2020 Jan; 100(2):509-516. PubMed ID: 31487036 [TBL] [Abstract][Full Text] [Related]
8. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: content, and antioxidant, anti-diabetic and anti-hypertensive properties. Alu'datt MH; Rababah T; Alhamad MN; Al-Mahasneh MA; Ereifej K; Al-Karaki G; Al-Duais M; Andrade JE; Tranchant CC; Kubow S; Ghozlan KA Food Funct; 2017 Sep; 8(9):3187-3197. PubMed ID: 28805834 [TBL] [Abstract][Full Text] [Related]
9. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Quan NV; Xuan TD; Tran HD; Thuy NTD; Trang LT; Huong CT; Andriana Y; Tuyen PT Molecules; 2019 Feb; 24(3):. PubMed ID: 30744084 [TBL] [Abstract][Full Text] [Related]
10. In Vitro Evaluation of the Anti-Diabetic Potential of Aqueous Acetone Akinyede KA; Oyewusi HA; Hughes GD; Ekpo OE; Oguntibeju OO Molecules; 2021 Dec; 27(1):. PubMed ID: 35011387 [TBL] [Abstract][Full Text] [Related]
11. Isolation, Identification and Characterization of a New Type of Lectin with α-Amylase Inhibitory Activity in Chickpea (Cicer arietinum L.). Wang Z; Chen M; Zhu Y; Qian P; Zhou Y; Wei J; Shen Y; Mijiti A; Gu A; Wang Z; Zhang H; Ma H Protein Pept Lett; 2017; 24(11):1008-1020. PubMed ID: 29081299 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory Effects of Siegesbeckia orientalis Extracts on Advanced Glycation End Product Formation and Key Enzymes Related to Metabolic Syndrome. Hung WC; Ling XH; Chang CC; Hsu HF; Wang SW; Lee YC; Luo C; Lee YT; Houng JY Molecules; 2017 Oct; 22(10):. PubMed ID: 29065451 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Ercan P; El SN Food Chem; 2016 Aug; 205():163-9. PubMed ID: 27006227 [TBL] [Abstract][Full Text] [Related]
15. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Ademiluyi AO; Oboh G Exp Toxicol Pathol; 2013 Mar; 65(3):305-9. PubMed ID: 22005499 [TBL] [Abstract][Full Text] [Related]
16. KINETICS OF MODULATORY ROLE OF Sabiu S; Ajani EO; Sunmonu TO; Ashafa AOT Afr J Tradit Complement Altern Med; 2017; 14(4):46-53. PubMed ID: 28638866 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts. Sharifi-Rad M; Tayeboon GS; Sharifi-Rad J; Iriti M; Varoni EM; Razazi S Cell Mol Biol (Noisy-le-grand); 2016 May; 62(6):80-5. PubMed ID: 27262808 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Kwon YI; Jang HD; Shetty K Asia Pac J Clin Nutr; 2006; 15(3):425-32. PubMed ID: 16837437 [TBL] [Abstract][Full Text] [Related]
19. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenal and Katononic Acid Isolated from Alqahtani AS; Hidayathulla S; Rehman MT; ElGamal AA; Al-Massarani S; Razmovski-Naumovski V; Alqahtani MS; El Dib RA; AlAjmi MF Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31905962 [No Abstract] [Full Text] [Related]