These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 30920002)
1. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. Wang X; Shen S; Rasam SS; Qu J Mass Spectrom Rev; 2019 Nov; 38(6):461-482. PubMed ID: 30920002 [TBL] [Abstract][Full Text] [Related]
2. An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts. Shen X; Shen S; Li J; Hu Q; Nie L; Tu C; Wang X; Orsburn B; Wang J; Qu J J Proteome Res; 2017 Jul; 16(7):2445-2456. PubMed ID: 28412812 [TBL] [Abstract][Full Text] [Related]
3. IonStar enables high-precision, low-missing-data proteomics quantification in large biological cohorts. Shen X; Shen S; Li J; Hu Q; Nie L; Tu C; Wang X; Poulsen DJ; Orsburn BC; Wang J; Qu J Proc Natl Acad Sci U S A; 2018 May; 115(21):E4767-E4776. PubMed ID: 29743190 [TBL] [Abstract][Full Text] [Related]
4. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics. Shen X; Hu Q; Li J; Wang J; Qu J J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676 [TBL] [Abstract][Full Text] [Related]
5. Ultra-High-Resolution IonStar Strategy Enhancing Accuracy and Precision of MS1-Based Proteomics and an Extensive Comparison with State-of-the-Art SWATH-MS in Large-Cohort Quantification. Wang X; Jin L; Hu C; Shen S; Qian S; Ma M; Zhu X; Li F; Wang J; Tian Y; Qu J Anal Chem; 2021 Mar; 93(11):4884-4893. PubMed ID: 33687211 [TBL] [Abstract][Full Text] [Related]
6. High-quality and robust protein quantification in large clinical/pharmaceutical cohorts with IonStar proteomics investigation. Shen S; Wang X; Zhu X; Rasam S; Ma M; Huo S; Qian S; Zhang M; Qu M; Hu C; Jin L; Tian Y; Sethi S; Poulsen D; Wang J; Tu C; Qu J Nat Protoc; 2023 Mar; 18(3):700-731. PubMed ID: 36494494 [TBL] [Abstract][Full Text] [Related]
7. A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry. Aoshima K; Takahashi K; Ikawa M; Kimura T; Fukuda M; Tanaka S; Parry HE; Fujita Y; Yoshizawa AC; Utsunomiya S; Kajihara S; Tanaka K; Oda Y BMC Bioinformatics; 2014 Nov; 15(1):376. PubMed ID: 25420746 [TBL] [Abstract][Full Text] [Related]
8. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification. Tu C; Shen S; Sheng Q; Shyr Y; Qu J J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464 [TBL] [Abstract][Full Text] [Related]
9. A rapid and sensitive single-cell proteomic method based on fast liquid-chromatography separation, retention time prediction and MS1-only acquisition. Fang W; Du Z; Kong L; Fu B; Wang G; Zhang Y; Qin W Anal Chim Acta; 2023 Apr; 1251():341038. PubMed ID: 36925302 [TBL] [Abstract][Full Text] [Related]
10. Data processing pipelines for comprehensive profiling of proteomics samples by label-free LC-MS for biomarker discovery. Christin C; Bischoff R; Horvatovich P Talanta; 2011 Jan; 83(4):1209-24. PubMed ID: 21215856 [TBL] [Abstract][Full Text] [Related]
11. New Insights into the Disease Progression Control Mechanisms by Comparing Long-Term-Nonprogressors versus Normal-Progressors among HIV-1-Positive Patients Using an Ion Current-Based MS1 Proteomic Profiling. Shen X; Nair B; Mahajan SD; Jiang X; Li J; Shen S; Tu C; Hsiao CB; Schwartz SA; Qu J J Proteome Res; 2015 Dec; 14(12):5225-39. PubMed ID: 26484939 [TBL] [Abstract][Full Text] [Related]
12. Surfactant Cocktail-Aided Extraction/Precipitation/On-Pellet Digestion Strategy Enables Efficient and Reproducible Sample Preparation for Large-Scale Quantitative Proteomics. Shen S; An B; Wang X; Hilchey SP; Li J; Cao J; Tian Y; Hu C; Jin L; Ng A; Tu C; Qu M; Zand MS; Qu J Anal Chem; 2018 Sep; 90(17):10350-10359. PubMed ID: 30078316 [TBL] [Abstract][Full Text] [Related]
13. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
14. Tutorial: Correction of shifts in single-stage LC-MS(/MS) data. Mitra V; Smilde AK; Bischoff R; Horvatovich P Anal Chim Acta; 2018 Jan; 999():37-53. PubMed ID: 29254573 [TBL] [Abstract][Full Text] [Related]
15. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Distler U; Kuharev J; Navarro P; Tenzer S Nat Protoc; 2016 Apr; 11(4):795-812. PubMed ID: 27010757 [TBL] [Abstract][Full Text] [Related]
16. Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics. Distler U; Kuharev J; Tenzer S Expert Rev Proteomics; 2014 Dec; 11(6):675-84. PubMed ID: 25327648 [TBL] [Abstract][Full Text] [Related]
17. Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-Up Proteomics. Duong VA; Park JM; Lee H Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102244 [TBL] [Abstract][Full Text] [Related]
18. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. Manes NP; Nita-Lazar A J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276 [TBL] [Abstract][Full Text] [Related]
19. Label-free LC-MS method for the identification of biomarkers. Higgs RE; Knierman MD; Gelfanova V; Butler JP; Hale JE Methods Mol Biol; 2008; 428():209-30. PubMed ID: 18287776 [TBL] [Abstract][Full Text] [Related]