These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30920791)

  • 1. High-Throughput Equilibrium Analysis of Active Materials for Solar Thermochemical Ammonia Synthesis.
    Bartel CJ; Rumptz JR; Weimer AW; Holder AM; Musgrave CB
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):24850-24858. PubMed ID: 30920791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Oxygen Carrier Materials and Related Thermochemical Redox Processes for Concentrating Solar Thermal Applications.
    Abanades S
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of metal nitride redox materials for solar-driven ammonia synthesis.
    Michalsky R; Pfromm PH; Steinfeld A
    Interface Focus; 2015 Jun; 5(3):20140084. PubMed ID: 26052421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aluminum Nitride Hydrolysis Enabled by Hydroxyl-Mediated Surface Proton Hopping.
    Bartel CJ; Muhich CL; Weimer AW; Musgrave CB
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18550-9. PubMed ID: 27341277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermochemical production of ammonia
    Notter D; Elias Abi-Ramia Silva T; Gálvez ME; Bulfin B; Steinfeld A
    Mater Horiz; 2024 Jul; ():. PubMed ID: 38962871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage.
    Michalsky R; Avram AM; Peterson BA; Pfromm PH; Peterson AA
    Chem Sci; 2015 Jul; 6(7):3965-3974. PubMed ID: 29218166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CeTi
    Naghavi SS; He J; Wolverton C
    ACS Appl Mater Interfaces; 2020 May; 12(19):21521-21527. PubMed ID: 32320199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation-Deficient Ce-Substituted Perovskite Oxides with Dual-Redox Active Sites for Thermochemical Applications.
    Naik JM; Bulfin B; Triana CA; Stoian DC; Patzke GR
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):806-817. PubMed ID: 36542810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Screening of Bicationic Redox Materials for Chemical Looping Ammonia Synthesis.
    Fan J; Li W; Li S; Yang J
    Adv Sci (Weinh); 2022 Sep; 9(27):e2202811. PubMed ID: 35871554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials.
    Carrillo AJ; González-Aguilar J; Romero M; Coronado JM
    Chem Rev; 2019 Apr; 119(7):4777-4816. PubMed ID: 30869873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production.
    Michalsky R; Botu V; Hargus CM; Peterson AA; Steinfeld A
    Adv Energy Mater; 2015 Apr; 5(7):1401082. PubMed ID: 26855639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage.
    High M; Patzschke CF; Zheng L; Zeng D; Gavalda-Diaz O; Ding N; Chien KHH; Zhang Z; Wilson GE; Berenov AV; Skinner SJ; Sedransk Campbell KL; Xiao R; Fennell PS; Song Q
    Nat Commun; 2022 Aug; 13(1):5109. PubMed ID: 36042227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Gas-Solid Reaction Thermodynamics on the Performance of a Chemical Looping Ammonia Synthesis Process.
    Pereira RJL; Hu W; Metcalfe IS
    Energy Fuels; 2022 Sep; 36(17):9757-9767. PubMed ID: 36081854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of the Two-Step H₂O/CO₂-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions.
    Loutzenhiser PG; Meier A; Steinfeld A
    Materials (Basel); 2010 Nov; 3(11):4922-4938. PubMed ID: 28883361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar thermochemical splitting of water to generate hydrogen.
    Rao CNR; Dey S
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13385-13393. PubMed ID: 28522461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates.
    Jian G; Zhou L; Piekiel NW; Zachariah MR
    Chemphyschem; 2014 Jun; 15(8):1666-72. PubMed ID: 24619858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible light driven efficient metal free single atom catalyst supported on nanoporous carbon nitride for nitrogen fixation.
    Bhattacharyya K; Datta A
    Phys Chem Chem Phys; 2019 Jun; 21(23):12346-12352. PubMed ID: 31140497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Redox Temperature of a Co
    Zaki A; Carrasco J; Bielsa D; Faik A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7010-7020. PubMed ID: 31927944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Solid-State Synthesis Routes for Inorganic Materials.
    Aykol M; Montoya JH; Hummelshøj J
    J Am Chem Soc; 2021 Jun; 143(24):9244-9259. PubMed ID: 34114812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry.
    Bartel CJ; Millican SL; Deml AM; Rumptz JR; Tumas W; Weimer AW; Lany S; Stevanović V; Musgrave CB; Holder AM
    Nat Commun; 2018 Oct; 9(1):4168. PubMed ID: 30301890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.