These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30920838)

  • 1. Hydrated Electron Generation by Excitation of Copper Localized Surface Plasmon Resonance.
    Pavliuk MV; Gutiérrez Álvarez S; Hattori Y; Messing ME; Czapla-Masztafiak J; Szlachetko J; Silva JL; Araujo CM; A Fernandes DL; Lu L; Kiely CJ; Abdellah M; Nordlander P; Sá J
    J Phys Chem Lett; 2019 Apr; 10(8):1743-1749. PubMed ID: 30920838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Insights into Photocatalyzed H
    Wu Q; Zhou L; Schatz GC; Zhang Y; Guo H
    J Am Chem Soc; 2020 Jul; 142(30):13090-13101. PubMed ID: 32615759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient plasmon-mediated electron injection into cerium oxide from embedded silver nanoparticles.
    Pelli Cresi JS; Spadaro MC; D'Addato S; Valeri S; Benedetti S; Di Bona A; Catone D; Di Mario L; O'Keeffe P; Paladini A; Bertoni G; Luches P
    Nanoscale; 2019 May; 11(21):10282-10291. PubMed ID: 31099368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis.
    DuChene JS; Sweeny BC; Johnston-Peck AC; Su D; Stach EA; Wei WD
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7887-91. PubMed ID: 24920227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexacyano Ferrate (III) Reduction by Electron Transfer Induced by Plasmonic Catalysis on Gold Nanoparticles.
    Sarhid I; Lampre I; Dragoe D; Beaunier P; Palpant B; Remita H
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31533263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation.
    Zhang HX; Li Y; Li MY; Zhang H; Zhang J
    Nanoscale; 2018 Feb; 10(5):2236-2241. PubMed ID: 29340395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the hydrated electron. Part 2. A mixed quantum/classical molecular dynamics embedded cluster density functional theory: single-excitation configuration interaction study.
    Shkrob IA; Glover WJ; Larsen RE; Schwartz BJ
    J Phys Chem A; 2007 Jun; 111(24):5232-43. PubMed ID: 17530823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the plasmonic enhancement for photocatalytic H
    Nie J; Patrocinio AOT; Hamid S; Sieland F; Sann J; Xia S; Bahnemann DW; Schneider J
    Phys Chem Chem Phys; 2018 Feb; 20(7):5264-5273. PubMed ID: 29400385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Dynamics of Water Radiolysis: Hydrated Electron Formation, Solvation, Recombination, and Scavenging.
    Yamamoto YI; Suzuki T
    J Phys Chem Lett; 2020 Jul; 11(14):5510-5516. PubMed ID: 32551690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient localized surface plasmon induced by femtosecond interband excitation in gold nanoparticles.
    Zhang X; Huang C; Wang M; Huang P; He X; Wei Z
    Sci Rep; 2018 Jul; 8(1):10499. PubMed ID: 30002475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films.
    Iandolo B; Antosiewicz TJ; Hellman A; Zorić I
    Phys Chem Chem Phys; 2013 Apr; 15(14):4947-54. PubMed ID: 23439980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis.
    Kerzig C; Guo X; Wenger OS
    J Am Chem Soc; 2019 Feb; 141(5):2122-2127. PubMed ID: 30672694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and reactivity of trapped electrons on supported ice crystallites.
    Stähler J; Gahl C; Wolf M
    Acc Chem Res; 2012 Jan; 45(1):131-8. PubMed ID: 22185698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrated Electrons in a Quaternary Microemulsion System: A Pulse Radiolysis Study.
    Adhikari S; Joshi R; Gopinathan C
    J Colloid Interface Sci; 1997 Jul; 191(1):268-71. PubMed ID: 9241228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change of Initial Yield of a Hydrated Electron with Uridine Monophosphate Concentration Is Related to the Excitation Photon Energy in Transient Absorption Spectroscopy.
    Yang S; Zhang Y; Zhao X
    J Phys Chem B; 2020 May; 124(18):3695-3700. PubMed ID: 32310667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation Energies of Plasmonic Catalysts.
    Kim Y; Dumett Torres D; Jain PK
    Nano Lett; 2016 May; 16(5):3399-407. PubMed ID: 27064549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.