These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 30920844)
1. A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities. Caligiuri V; Palei M; Biffi G; Artyukhin S; Krahne R Nano Lett; 2019 May; 19(5):3151-3160. PubMed ID: 30920844 [TBL] [Abstract][Full Text] [Related]
2. In-Plane and Out-of-Plane Investigation of Resonant Tunneling Polaritons in Metal-Dielectric-Metal Cavities. Patra A; Caligiuri V; Zappone B; Krahne R; De Luca A Nano Lett; 2023 Feb; 23(4):1489-1495. PubMed ID: 36745481 [TBL] [Abstract][Full Text] [Related]
3. Geometric control over surface plasmon polariton out-coupling pathways in metal-insulator-metal tunnel junctions. Radulescu A; Makarenko KS; Hoang TX; Kalathingal V; Duffin TJ; Chu HS; Nijhuis CA Opt Express; 2021 Apr; 29(8):11987-12000. PubMed ID: 33984968 [TBL] [Abstract][Full Text] [Related]
4. Highly efficient tunable and localized on-chip electrical plasmon source using protruded metal-insulator-metal structure. Phua WK; Akimov Y; Wu L; Chu HS; Bai P; Danner A Opt Express; 2016 May; 24(10):10663-74. PubMed ID: 27409887 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of Long-Range Surface Plasmon Excitation, Dynamic Range and Figure of Merit Using a Dielectric Resonant Cavity. Suvarnaphaet P; Pechprasarn S Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30131469 [TBL] [Abstract][Full Text] [Related]
6. Dynamic Control of Nanocavities with Tunable Metal Oxides. Kim J; Carnemolla EG; DeVault C; Shaltout AM; Faccio D; Shalaev VM; Kildishev AV; Ferrera M; Boltasseva A Nano Lett; 2018 Feb; 18(2):740-746. PubMed ID: 29283583 [TBL] [Abstract][Full Text] [Related]
7. Efficient Surface Plasmon Polariton Excitation and Control over Outcoupling Mechanisms in Metal-Insulator-Metal Tunneling Junctions. Makarenko KS; Hoang TX; Duffin TJ; Radulescu A; Kalathingal V; Lezec HJ; Chu HS; Nijhuis CA Adv Sci (Weinh); 2020 Apr; 7(8):1900291. PubMed ID: 32328407 [TBL] [Abstract][Full Text] [Related]
8. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities. Li J; Chen J; Liu X; Tian H; Wang J; Cui J; Rohimah S Appl Opt; 2021 Jun; 60(18):5312-5319. PubMed ID: 34263768 [TBL] [Abstract][Full Text] [Related]
9. Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System. Wang Q; Ouyang Z; Lin M; Liu Q Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30201870 [TBL] [Abstract][Full Text] [Related]
10. Non-Periodic Epsilon-Near-Zero Metamaterials at Visible Wavelengths for Efficient Non-Resonant Optical Sensing. Fusco Z; Taheri M; Bo R; Tran-Phu T; Chen H; Guo X; Zhu Y; Tsuzuki T; White TP; Tricoli A Nano Lett; 2020 May; 20(5):3970-3977. PubMed ID: 32343590 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic mode coupling and thin film sensing in metal-insulator-metal structures. Andam N; Refki S; Hayashi S; Sekkat Z Sci Rep; 2021 Jul; 11(1):15093. PubMed ID: 34301973 [TBL] [Abstract][Full Text] [Related]
12. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. Liberal I; Engheta N Sci Adv; 2016 Oct; 2(10):e1600987. PubMed ID: 27819047 [TBL] [Abstract][Full Text] [Related]
13. Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure. Li Z; Wen K; Chen L; Lei L; Zhou J; Zhou D; Fang Y; Wu B Appl Opt; 2019 Jun; 58(18):4878-4883. PubMed ID: 31503812 [TBL] [Abstract][Full Text] [Related]
14. Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal-insulator-metal nanocavities in near-ultraviolet spectrum. Li L; Wang L; Du C; Guan Z; Xiang Y; Wu W; Ren M; Zhang X; Tang A; Cai W; Xu J Nanoscale; 2020 Feb; 12(5):3112-3120. PubMed ID: 31965128 [TBL] [Abstract][Full Text] [Related]
15. MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity. Zhu J; Li N Opt Express; 2020 Jul; 28(14):19978-19987. PubMed ID: 32680066 [TBL] [Abstract][Full Text] [Related]
16. MIM waveguide system with independently tunable double resonances and its application for two-parameter detection. Wu Q; Zhang Y; Qu D; Li C Appl Opt; 2022 Sep; 61(25):7409-7414. PubMed ID: 36256042 [TBL] [Abstract][Full Text] [Related]
17. Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement. Caligiuri V; Palei M; Imran M; Manna L; Krahne R ACS Photonics; 2018 Jun; 5(6):2287-2294. PubMed ID: 31867410 [TBL] [Abstract][Full Text] [Related]
18. Independently tunable Fano resonances in a metal-insulator-metal coupled cavities system. Chen Y; Chen L; Wen K; Hu Y; Lin W Appl Opt; 2020 Feb; 59(5):1484-1490. PubMed ID: 32225407 [TBL] [Abstract][Full Text] [Related]
19. Surface plasmon modes of nanomesh-on-mirror nanocavities prepared by nanosphere lithography. Stelling C; Fossati S; Dostalek J; Retsch M Nanoscale; 2018 Sep; 10(37):17983-17989. PubMed ID: 30226239 [TBL] [Abstract][Full Text] [Related]
20. Tailoring the Thickness-Dependent Optical Properties of Conducting Nitrides and Oxides for Epsilon-Near-Zero-Enhanced Photonic Applications. Saha S; Ozlu MG; Chowdhury SN; Diroll BT; Schaller RD; Kildishev A; Boltasseva A; Shalaev VM Adv Mater; 2023 Aug; 35(34):e2109546. PubMed ID: 35917390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]