These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30921512)

  • 21. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.
    Chen L; Shi G; Shen J; Peng B; Zhang B; Wang Y; Bian F; Wang J; Li D; Qian Z; Xu G; Liu G; Zeng J; Zhang L; Yang Y; Zhou G; Wu M; Jin W; Li J; Fang H
    Nature; 2017 Oct; 550(7676):380-383. PubMed ID: 28992630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal design of graphene nanopores for seawater desalination.
    Li Z; Qiu Y; Li K; Sha J; Li T; Chen Y
    J Chem Phys; 2018 Jan; 148(1):014703. PubMed ID: 29306278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cesium-Induced Ionic Conduction through a Single Nanofluidic Pore Modified with Calixcrown Moieties.
    Ali M; Ahmed I; Ramirez P; Nasir S; Cervera J; Mafe S; Niemeyer CM; Ensinger W
    Langmuir; 2017 Sep; 33(36):9170-9177. PubMed ID: 28796516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable Current Rectification and Selectivity Demonstrated in Nanofluidic Diodes through Kinetic Functionalization.
    Lin CY; Ma T; Siwy ZS; Balme S; Hsu JP
    J Phys Chem Lett; 2020 Jan; 11(1):60-66. PubMed ID: 31814408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores.
    Qian S; Joo SW; Ai Y; Cheney MA; Hou W
    J Colloid Interface Sci; 2009 Jan; 329(2):376-83. PubMed ID: 18977486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.
    Wu X; Ramiah Rajasekaran P; Martin CR
    ACS Nano; 2016 Apr; 10(4):4637-43. PubMed ID: 27046145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photo-induced ultrafast active ion transport through graphene oxide membranes.
    Yang J; Hu X; Kong X; Jia P; Ji D; Quan D; Wang L; Wen Q; Lu D; Wu J; Jiang L; Guo W
    Nat Commun; 2019 Mar; 10(1):1171. PubMed ID: 30862778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore.
    Lin DH; Lin CY; Tseng S; Hsu JP
    Nanoscale; 2015 Sep; 7(33):14023-31. PubMed ID: 26239192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Origin of Ultrahigh Rectification in Polyelectrolyte Bilayers Modified Conical Nanopores.
    Liu TJ; Ma T; Lin CY; Balme S; Hsu JP
    J Phys Chem Lett; 2021 Dec; 12(49):11858-11864. PubMed ID: 34874161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.
    Zeng Z; Ai Y; Qian S
    Phys Chem Chem Phys; 2014 Feb; 16(6):2465-74. PubMed ID: 24358472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ion transport and current rectification in a charged conical nanopore filled with viscoelastic fluids.
    Trivedi M; Nirmalkar N
    Sci Rep; 2022 Feb; 12(1):2547. PubMed ID: 35169151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cation pumping against a concentration gradient in conical nanopores characterized by load capacitors.
    Cervera J; Ramirez P; Nasir S; Ali M; Ensinger W; Siwy ZS; Mafe S
    Bioelectrochemistry; 2023 Aug; 152():108445. PubMed ID: 37086711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion selection of charge-modified large nanopores in a graphene sheet.
    Zhao S; Xue J; Kang W
    J Chem Phys; 2013 Sep; 139(11):114702. PubMed ID: 24070300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification.
    Khatibi M; Ashrafizadeh SN; Sadeghi A
    Anal Chim Acta; 2020 Jul; 1122():48-60. PubMed ID: 32503743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unexpected ionic transport behavior in hydrophobic and uncharged conical nanopores.
    Balme S; Picaud F; Lepoitevin M; Bechelany M; Balanzat E; Janot JM
    Faraday Discuss; 2018 Oct; 210(0):69-85. PubMed ID: 29992218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoprecipitation-assisted ion current oscillations.
    Powell MR; Sullivan M; Vlassiouk I; Constantin D; Sudre O; Martens CC; Eisenberg RS; Siwy ZS
    Nat Nanotechnol; 2008 Jan; 3(1):51-7. PubMed ID: 18654451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of conical nanopore diameter on ion current rectification.
    Kovarik ML; Zhou K; Jacobson SC
    J Phys Chem B; 2009 Dec; 113(49):15960-6. PubMed ID: 19908894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.
    Momotenko D; Girault HH
    J Am Chem Soc; 2011 Sep; 133(37):14496-9. PubMed ID: 21851111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.
    Wang L; Zhang H; Yang Z; Zhou J; Wen L; Li L; Jiang L
    Phys Chem Chem Phys; 2015 Mar; 17(9):6367-73. PubMed ID: 25649179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.