These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30921584)

  • 1. Stimulation of ferrihydrite nanorods on fermentative hydrogen production by Clostridium pasteurianum.
    Zhang Y; Xiao L; Wang S; Liu F
    Bioresour Technol; 2019 Jul; 283():308-315. PubMed ID: 30921584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe
    Reddy K; Nasr M; Kumari S; Kumar S; Gupta SK; Enitan AM; Bux F
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8790-8804. PubMed ID: 28213710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing Fe (II)-induced mineralization pathways of ferrihydrite.
    Hansel CM; Benner SG; Fendorf S
    Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of magnetic field on fermentative hydrogen production by Clostridium pasteurianum.
    Chen L; Zhang K; Wang M; Zhang Z; Feng Y
    Bioresour Technol; 2021 Dec; 341():125764. PubMed ID: 34438289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homologous overexpression of hydrogenase and glycerol dehydrogenase in Clostridium pasteurianum to enhance hydrogen production from crude glycerol.
    Sarma S; Ortega D; Minton NP; Dubey VK; Moholkar VS
    Bioresour Technol; 2019 Jul; 284():168-177. PubMed ID: 30933825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum.
    Beckers L; Hiligsmann S; Lambert SD; Heinrichs B; Thonart P
    Bioresour Technol; 2013 Apr; 133():109-17. PubMed ID: 23428815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of lactate-utilizing pathway for enhancing biohydrogen production by magnetite supplementation in Clostridium butyricum.
    Kim DH; Yoon JJ; Kim SH; Park JH
    Bioresour Technol; 2022 Sep; 359():127448. PubMed ID: 35691503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum.
    Mohanraj S; Kodhaiyolii S; Rengasamy M; Pugalenthi V
    Appl Biochem Biotechnol; 2014 May; 173(1):318-31. PubMed ID: 24648140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the culture media optimization, pH and temperature on the biohydrogen production and the hydrogenase activities by Klebsiella pneumoniae ECU-15.
    Xiao Y; Zhang X; Zhu M; Tan W
    Bioresour Technol; 2013 Jun; 137():9-17. PubMed ID: 23584405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement effect of hematite nanoparticles on fermentative hydrogen production.
    Han H; Cui M; Wei L; Yang H; Shen J
    Bioresour Technol; 2011 Sep; 102(17):7903-9. PubMed ID: 21696950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Link between characteristics of Fe(III) oxides and critical role in enhancing anaerobic methanogenic degradation of complex organic compounds.
    Tang Y; Li Y; Zhang M; Xiong P; Liu L; Bao Y; Zhao Z
    Environ Res; 2021 Mar; 194():110498. PubMed ID: 33220246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence.
    Lee HS; Krajmalinik-Brown R; Zhang H; Rittmann BE
    Biotechnol Bioeng; 2009 Nov; 104(4):687-97. PubMed ID: 19530077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exogenous electron shuttles on growth and fermentative metabolism in Clostridium sp. BC1.
    Yarlagadda VN; Gupta A; Dodge CJ; Francis AJ
    Bioresour Technol; 2012 Mar; 108():295-9. PubMed ID: 22273516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies.
    Lo YC; Chen WM; Hung CH; Chen SD; Chang JS
    Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116).
    Srivastava N; Srivastava M; Kushwaha D; Gupta VK; Manikanta A; Ramteke PW; Mishra PK
    Bioresour Technol; 2017 Aug; 238():552-558. PubMed ID: 28477517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR.
    Chang JJ; Chen WE; Shih SY; Yu SJ; Lay JJ; Wen FS; Huang CC
    Appl Microbiol Biotechnol; 2006 May; 70(5):598-604. PubMed ID: 16217655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria.
    Zhao W; Zhang Y; Du B; Wei D; Wei Q; Zhao Y
    Bioresour Technol; 2013 Aug; 142():240-5. PubMed ID: 23743428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture.
    Qiu C; Shi P; Xiao S; Sun L
    World J Microbiol Biotechnol; 2017 Jan; 33(1):7. PubMed ID: 27858340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired magnetite formation from a disordered ferrihydrite-derived precursor.
    Dey A; Lenders JJ; Sommerdijk NA
    Faraday Discuss; 2015; 179():215-25. PubMed ID: 25865290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods.
    Cho W; Park S; Oh M
    Chem Commun (Camb); 2011 Apr; 47(14):4138-40. PubMed ID: 21380446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.