These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 30921584)
41. Electron shuttling to ferrihydrite selects for fermentative rather than Fe Popovic J; Finneran KT Biotechnol Bioeng; 2018 Mar; 115(3):577-585. PubMed ID: 29131314 [TBL] [Abstract][Full Text] [Related]
42. Acid pre-treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: effectiveness and reproducibility. Tommasi T; Sassi G; Ruggeri B Water Sci Technol; 2008; 58(8):1623-8. PubMed ID: 19001717 [TBL] [Abstract][Full Text] [Related]
43. Mobilization and re-adsorption of arsenate on ferrihydrite and hematite in the presence of oxalate. Yu B; Jia SY; Liu Y; Wu SH; Han X J Hazard Mater; 2013 Nov; 262():701-8. PubMed ID: 24121641 [TBL] [Abstract][Full Text] [Related]
44. Coupling methanogenesis with iron reduction by acetotrophic Methanosarcina mazei zm-15. Yang Z; Lu Y Environ Microbiol Rep; 2022 Oct; 14(5):804-811. PubMed ID: 35641250 [TBL] [Abstract][Full Text] [Related]
45. Optimisation and enhancement of biohydrogen production using nickel nanoparticles - a novel approach. Mullai P; Yogeswari MK; Sridevi K Bioresour Technol; 2013 Aug; 141():212-9. PubMed ID: 23582220 [TBL] [Abstract][Full Text] [Related]
46. Enhanced biohydrogen production from macroalgae by zero-valent iron nanoparticles: Insights into microbial and metabolites distribution. Yin Y; Wang J Bioresour Technol; 2019 Jun; 282():110-117. PubMed ID: 30852330 [TBL] [Abstract][Full Text] [Related]
47. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum. Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556 [TBL] [Abstract][Full Text] [Related]
48. Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor. Palomo-Briones R; Trably E; López-Lozano NE; Celis LB; Méndez-Acosta HO; Bernet N; Razo-Flores E Appl Microbiol Biotechnol; 2018 Mar; 102(5):2465-2475. PubMed ID: 29335876 [TBL] [Abstract][Full Text] [Related]
49. Characterization of Fe-hydrogenase genes diversity and hydrogen-producing population in an acidophilic sludge. Fang HH; Zhang T; Li C J Biotechnol; 2006 Nov; 126(3):357-64. PubMed ID: 16730831 [TBL] [Abstract][Full Text] [Related]
50. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene. Paul L; Smolders E Chemosphere; 2014 Sep; 111():471-7. PubMed ID: 24997954 [TBL] [Abstract][Full Text] [Related]
51. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI). Boland DD; Collins RN; Payne TE; Waite TD Environ Sci Technol; 2011 Feb; 45(4):1327-33. PubMed ID: 21210678 [TBL] [Abstract][Full Text] [Related]
52. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures. Wang M; Zhao Q; Li L; Niu K; Li Y; Wang F; Jiang B; Liu K; Jiang Y; Fang X Appl Microbiol Biotechnol; 2016 Oct; 100(19):8607-20. PubMed ID: 27538932 [TBL] [Abstract][Full Text] [Related]
53. Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria. Sagir E; Ozgur E; Gunduz U; Eroglu I; Yucel M Bioprocess Biosyst Eng; 2017 Nov; 40(11):1589-1601. PubMed ID: 28730325 [TBL] [Abstract][Full Text] [Related]
54. Improvement of hydrogen production from glucose by ferrous iron and biochar. Zhang J; Fan C; Zang L Bioresour Technol; 2017 Dec; 245(Pt A):98-105. PubMed ID: 28892711 [TBL] [Abstract][Full Text] [Related]
55. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. Brown KA; Wilker MB; Boehm M; Dukovic G; King PW J Am Chem Soc; 2012 Mar; 134(12):5627-36. PubMed ID: 22352762 [TBL] [Abstract][Full Text] [Related]
56. Metabolic flux network analysis of hydrogen production from crude glycerol by Clostridium pasteurianum. Sarma S; Anand A; Dubey VK; Moholkar VS Bioresour Technol; 2017 Oct; 242():169-177. PubMed ID: 28456454 [TBL] [Abstract][Full Text] [Related]
57. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures ofClostridium spp. Masset J; Calusinska M; Hamilton C; Hiligsmann S; Joris B; Wilmotte A; Thonart P Biotechnol Biofuels; 2012 May; 5(1):35. PubMed ID: 22616621 [TBL] [Abstract][Full Text] [Related]
58. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens. Etique M; Jorand FP; Ruby C Geobiology; 2016 May; 14(3):237-54. PubMed ID: 26715461 [TBL] [Abstract][Full Text] [Related]
59. Impact of butyric acid on butanol formation by Clostridium pasteurianum. Regestein L; Doerr EW; Staaden A; Rehmann L Bioresour Technol; 2015 Nov; 196():153-9. PubMed ID: 26233327 [TBL] [Abstract][Full Text] [Related]
60. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass. Hassan EA; Abd-Alla MH; Bagy MM; Morsy FM Anaerobe; 2015 Aug; 34():125-31. PubMed ID: 26014369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]