These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30921650)

  • 1. Reliability of traditional and task specific reference tasks to assess peak muscle activation during two different sprint cycling tests.
    Kordi M; Folland J; Goodall S; Barratt P; Howatson G
    J Electromyogr Kinesiol; 2019 Jun; 46():41-48. PubMed ID: 30921650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isovelocity vs. Isoinertial Sprint Cycling Tests for Power- and Torque-cadence Relationships.
    Kordi M; Folland J; Goodall S; Barratt P; Howatson G
    Int J Sports Med; 2019 Dec; 40(14):897-902. PubMed ID: 31590190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative methods of normalising EMG during cycling.
    Albertus-Kajee Y; Tucker R; Derman W; Lambert M
    J Electromyogr Kinesiol; 2010 Dec; 20(6):1036-43. PubMed ID: 20696597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adjustment of muscle coordination during an all-out sprint cycling task.
    Dorel S; Guilhem G; Couturier A; Hug F
    Med Sci Sports Exerc; 2012 Nov; 44(11):2154-64. PubMed ID: 22677928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between Peak Power Output in Sprint Cycling and Maximum Voluntary Isometric Torque Production.
    Kordi M; Goodall S; Barratt P; Rowley N; Leeder J; Howatson G
    J Electromyogr Kinesiol; 2017 Aug; 35():95-99. PubMed ID: 28624688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of power output during eccentric sprint cycling.
    Brughelli M; Van Leemputte M
    J Strength Cond Res; 2013 Jan; 27(1):76-82. PubMed ID: 22344057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normalisation of a biarticular muscle EMG signal using a submaximal voluntary contraction: Choice of the standardised isometric task for the rectus femoris, a pilot study.
    Moissenet F; Tabard-Fougère A; Genevay S; Armand S
    Gait Posture; 2022 Jan; 91():161-164. PubMed ID: 34736094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cycling-specific isometric resistance training improves peak power output in elite sprint cyclists.
    Kordi M; Folland JP; Goodall S; Menzies C; Patel TS; Evans M; Thomas K; Howatson G
    Scand J Med Sci Sports; 2020 Sep; 30(9):1594-1604. PubMed ID: 32516483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG normalization to study muscle activation in cycling.
    Rouffet DM; Hautier CA
    J Electromyogr Kinesiol; 2008 Oct; 18(5):866-78. PubMed ID: 17507240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caffeine and Sprint Cycling Performance: Effects of Torque Factor and Sprint Duration.
    Glaister M; Towey C; Jeffries O; Muniz-Pumares D; Foley P; McInnes G
    Int J Sports Physiol Perform; 2019 Apr; 14(4):426-431. PubMed ID: 30204516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and morphological determinants of peak power output in elite cyclists.
    Kordi M; Folland J; Goodall S; Haralabidis N; Maden-Wilkinson T; Sarika Patel T; Leeder J; Barratt P; Howatson G
    Scand J Med Sci Sports; 2020 Feb; 30(2):227-237. PubMed ID: 31598998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peak power output provides the most reliable measure of performance in prolonged intermittent-sprint cycling.
    Hayes M; Smith D; Castle PC; Watt PW; Ross EZ; Maxwell NS
    J Sports Sci; 2013; 31(5):565-72. PubMed ID: 23176342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentiation of sprint cycling performance: the effects of a high-inertia ergometer warm-up.
    Munro LA; Stannard SR; Fink PW; Foskett A
    J Sports Sci; 2017 Jul; 35(14):1442-1450. PubMed ID: 27483990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of isometric maximum strength and peak rate-of-force development in sprint cycling.
    Stone MH; Sands WA; Carlock J; Callan S; Dickie D; Daigle K; Cotton J; Smith SL; Hartman M
    J Strength Cond Res; 2004 Nov; 18(4):878-84. PubMed ID: 15574097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test.
    Coso JD; Mora-Rodríguez R
    Appl Physiol Nutr Metab; 2006 Jun; 31(3):186-9. PubMed ID: 16770343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of the reliability and standardisation of tests used to elicit reference muscular actions for electromyographical normalisation.
    Ball N; Scurr J
    J Electromyogr Kinesiol; 2010 Feb; 20(1):81-8. PubMed ID: 19027326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproducibility of a 6-s maximal cycling sprint test.
    Mendez-Villanueva A; Bishop D; Hamer P
    J Sci Med Sport; 2007 Oct; 10(5):323-6. PubMed ID: 16949868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in muscle coordination and power output during sprint cycling.
    O'Bryan SJ; Brown NA; Billaut F; Rouffet DM
    Neurosci Lett; 2014 Jul; 576():11-6. PubMed ID: 24861507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle stiffness and rate of torque development during sprint cycling.
    Watsford M; Ditroilo M; Fernández-Peña E; D'Amen G; Lucertini F
    Med Sci Sports Exerc; 2010 Jul; 42(7):1324-32. PubMed ID: 20019624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of a 5 x 6-s maximal cycling repeated-sprint test in trained female team-sport athletes.
    McGawley K; Bishop D
    Eur J Appl Physiol; 2006 Nov; 98(4):383-93. PubMed ID: 16955291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.