These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 30921771)
1. Correlations between the shifts in prompt gamma emission profiles and the changes in daily target coverage during simulated pencil beam scanning proton therapy. Lens E; Jagt TZ; Hoogeman MS; Schaart DR Phys Med Biol; 2019 Apr; 64(8):085009. PubMed ID: 30921771 [TBL] [Abstract][Full Text] [Related]
2. A new treatment planning approach accounting for prompt gamma range verification and interfractional anatomical changes. Tian L; Landry G; Dedes G; Pinto M; Kamp F; Belka C; Parodi K Phys Med Biol; 2020 Apr; 65(9):095005. PubMed ID: 32135530 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo study on the sensitivity of prompt gamma imaging to proton range variations due to interfractional changes in prostate cancer patients. Schmid S; Landry G; Thieke C; Verhaegen F; Ganswindt U; Belka C; Parodi K; Dedes G Phys Med Biol; 2015 Dec; 60(24):9329-47. PubMed ID: 26581022 [TBL] [Abstract][Full Text] [Related]
4. Toward a new treatment planning approach accounting for in vivo proton range verification. Tian L; Landry G; Dedes G; Kamp F; Pinto M; Niepel K; Belka C; Parodi K Phys Med Biol; 2018 Oct; 63(21):215025. PubMed ID: 30375361 [TBL] [Abstract][Full Text] [Related]
5. Accounting for prompt gamma emission and detection for range verification in proton therapy treatment planning. Tian L; Huang Z; Janssens G; Landry G; Dedes G; Kamp F; Belka C; Pinto M; Parodi K Phys Med Biol; 2021 Feb; 66(5):055005. PubMed ID: 33171445 [TBL] [Abstract][Full Text] [Related]
6. A Monte-Carlo study to assess the effect of 1.5 T magnetic fields on the overall robustness of pencil-beam scanning proton radiotherapy plans for prostate cancer. Kurz C; Landry G; Resch AF; Dedes G; Kamp F; Ganswindt U; Belka C; Raaymakers BW; Parodi K Phys Med Biol; 2017 Oct; 62(21):8470-8482. PubMed ID: 29047455 [TBL] [Abstract][Full Text] [Related]
7. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification. Polf JC; Avery S; Mackin DS; Beddar S Phys Med Biol; 2015 Sep; 60(18):7085-99. PubMed ID: 26317610 [TBL] [Abstract][Full Text] [Related]
8. Prospective MRI-based imaging study to assess feasibility of proton therapy for post-prostatectomy radiation. Swisher-McClure S; Yin L; Rosen M; Batra S; Berman AT; Both S; Vapiwala N Acta Oncol; 2016 Jul; 55(7):828-33. PubMed ID: 27145164 [TBL] [Abstract][Full Text] [Related]
9. Plan Selection in Proton Therapy of Locally Advanced Prostate Cancer with Simultaneous Treatment of Multiple Targets. Pilskog S; Abal B; Øvrelid KS; Engeseth GM; Ytre-Hauge KS; Hysing LB Int J Radiat Oncol Biol Phys; 2020 Mar; 106(3):630-638. PubMed ID: 31759076 [TBL] [Abstract][Full Text] [Related]
10. Comparison of prostate proton treatment planning technique, interfraction robustness, and analysis of single-field treatment feasibility. Kirk ML; Tang S; Zhai H; Vapiwala N; Deville C; James P; Bekelman JE; Christodouleas JP; Tochner Z; Both S Pract Radiat Oncol; 2015; 5(2):99-105. PubMed ID: 25413411 [TBL] [Abstract][Full Text] [Related]
11. Impact of intrafraction and residual interfraction effect on prostate proton pencil beam scanning. Tang S; Deville C; Tochner Z; Wang KK; McDonough J; Vapiwala N; Both S Int J Radiat Oncol Biol Phys; 2014 Dec; 90(5):1186-94. PubMed ID: 25442043 [TBL] [Abstract][Full Text] [Related]
12. Feasibility and robustness of dose painting by numbers in proton therapy with contour-driven plan optimization. Barragán AM; Differding S; Janssens G; Lee JA; Sterpin E Med Phys; 2015 Apr; 42(4):2006-17. PubMed ID: 25832091 [TBL] [Abstract][Full Text] [Related]
13. Impact of grid size on uniform scanning and IMPT plans in XiO treatment planning system for brain cancer. Rana S; Zheng Y J Appl Clin Med Phys; 2015 Sep; 16(5):447–456. PubMed ID: 26699310 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a deep learning-based pelvic synthetic CT generation technique for MRI-based prostate proton treatment planning. Liu Y; Lei Y; Wang Y; Shafai-Erfani G; Wang T; Tian S; Patel P; Jani AB; McDonald M; Curran WJ; Liu T; Zhou J; Yang X Phys Med Biol; 2019 Oct; 64(20):205022. PubMed ID: 31487698 [TBL] [Abstract][Full Text] [Related]
15. Estimation of respiratory phases during proton radiotherapy from a 4D-CT and Prompt gamma detection profiles. Albert J; Labarbe R; Janssens G; Souris K; Sterpin E Phys Med; 2019 Aug; 64():33-39. PubMed ID: 31515033 [TBL] [Abstract][Full Text] [Related]
16. Dosimetric effects of the prone and supine positions on image guided localized prostate cancer radiotherapy. Liu B; Lerma FA; Patel S; Amin P; Feng Y; Yi BY; Yu C Radiother Oncol; 2008 Jul; 88(1):67-76. PubMed ID: 18207595 [TBL] [Abstract][Full Text] [Related]
17. Detecting prompt gamma emission during proton therapy: the effects of detector size and distance from the patient. Polf JC; Mackin D; Lee E; Avery S; Beddar S Phys Med Biol; 2014 May; 59(9):2325-40. PubMed ID: 24732052 [TBL] [Abstract][Full Text] [Related]
18. Concepts of PTV and Robustness in Passively Scattered and Pencil Beam Scanning Proton Therapy. Langen K; Zhu M Semin Radiat Oncol; 2018 Jun; 28(3):248-255. PubMed ID: 29933884 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: Dose calculation accuracy in substitute CT images. Koivula L; Wee L; Korhonen J Med Phys; 2016 Aug; 43(8):4634. PubMed ID: 27487880 [TBL] [Abstract][Full Text] [Related]
20. Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: evaluation of the impact on daily dose coverage. Wang L; Hayes S; Paskalev K; Jin L; Buyyounouski MK; Ma CC; Feigenberg S Radiother Oncol; 2009 Jun; 91(3):314-24. PubMed ID: 19111362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]