These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30922618)

  • 1. New heteroaryl carbamates: Synthesis and biological screening in vitro and in mammalian cells of wild-type and mutant HIV-protease inhibitors.
    Tramutola F; Armentano MF; Berti F; Chiummiento L; Lupattelli P; D'Orsi R; Miglionico R; Milella L; Bisaccia F; Funicello M
    Bioorg Med Chem; 2019 May; 27(9):1863-1870. PubMed ID: 30922618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and biological evaluation in vitro and in mammalian cells of new heteroaryl carboxyamides as HIV-protease inhibitors.
    Funicello M; Chiummiento L; Tramutola F; Armentano MF; Bisaccia F; Miglionico R; Milella L; Benedetti F; Berti F; Lupattelli P
    Bioorg Med Chem; 2017 Sep; 25(17):4715-4722. PubMed ID: 28739156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and biological evaluation of novel amprenavir-based P1-substituted bi-aryl derivatives as ultra-potent HIV-1 protease inhibitors.
    Yan J; Huang N; Li S; Yang LM; Xing W; Zheng YT; Hu Y
    Bioorg Med Chem Lett; 2012 Mar; 22(5):1976-9. PubMed ID: 22306123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and biological evaluation of new simple indolic non peptidic HIV Protease inhibitors: the effect of different substitution patterns.
    Bonini C; Chiummiento L; Di Blasio N; Funicello M; Lupattelli P; Tramutola F; Berti F; Ostric A; Miertus S; Frecer V; Kong DX
    Bioorg Med Chem; 2014 Sep; 22(17):4792-802. PubMed ID: 25074848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease.
    Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A
    BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substituted Bis-THF Protease Inhibitors with Improved Potency against Highly Resistant Mature HIV-1 Protease PR20.
    Agniswamy J; Louis JM; Shen CH; Yashchuk S; Ghosh AK; Weber IT
    J Med Chem; 2015 Jun; 58(12):5088-95. PubMed ID: 26010498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of HIV protease inhibitors targeting protein backbone: an effective strategy for combating drug resistance.
    Ghosh AK; Chapsal BD; Weber IT; Mitsuya H
    Acc Chem Res; 2008 Jan; 41(1):78-86. PubMed ID: 17722874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PL-100, a novel HIV-1 protease inhibitor displaying a high genetic barrier to resistance: an in vitro selection study.
    Dandache S; Coburn CA; Oliveira M; Allison TJ; Holloway MK; Wu JJ; Stranix BR; Panchal C; Wainberg MA; Vacca JP
    J Med Virol; 2008 Dec; 80(12):2053-63. PubMed ID: 19040279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Pyridyl P1'-substituted symmetry-based human immunodeficiency virus protease inhibitors (A-792611 and A-790742) with potential for convenient dosing and reduced side effects.
    Degoey DA; Grampovnik DJ; Flentge CA; Flosi WJ; Chen HJ; Yeung CM; Randolph JT; Klein LL; Dekhtyar T; Colletti L; Marsh KC; Stoll V; Mamo M; Morfitt DC; Nguyen B; Schmidt JM; Swanson SJ; Mo H; Kati WM; Molla A; Kempf DJ
    J Med Chem; 2009 Apr; 52(8):2571-86. PubMed ID: 19323562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potent HIV protease inhibitors containing a novel (hydroxyethyl)amide isostere.
    Beaulieu PL; Wernic D; Abraham A; Anderson PC; Bogri T; Bousquet Y; Croteau G; Guse I; Lamarre D; Liard F; Paris W; Thibeault D; Pav S; Tong L
    J Med Chem; 1997 Jul; 40(14):2164-76. PubMed ID: 9216835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance.
    Nalam MN; Ali A; Altman MD; Reddy GS; Chellappan S; Kairys V; Ozen A; Cao H; Gilson MK; Tidor B; Rana TM; Schiffer CA
    J Virol; 2010 May; 84(10):5368-78. PubMed ID: 20237088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure.
    Gulnik SV; Suvorov LI; Liu B; Yu B; Anderson B; Mitsuya H; Erickson JW
    Biochemistry; 1995 Jul; 34(29):9282-7. PubMed ID: 7626598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GRL-079, a Novel HIV-1 Protease Inhibitor, Is Extremely Potent against Multidrug-Resistant HIV-1 Variants and Has a High Genetic Barrier against the Emergence of Resistant Variants.
    Delino NS; Aoki M; Hayashi H; Hattori SI; Chang SB; Takamatsu Y; Martyr CD; Das D; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2018 May; 62(5):. PubMed ID: 29463535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro.
    Maguire MF; Guinea R; Griffin P; Macmanus S; Elston RC; Wolfram J; Richards N; Hanlon MH; Porter DJ; Wrin T; Parkin N; Tisdale M; Furfine E; Petropoulos C; Snowden BW; Kleim JP
    J Virol; 2002 Aug; 76(15):7398-406. PubMed ID: 12097552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oximinoarylsulfonamides as potent HIV protease inhibitors.
    Yeung CM; Klein LL; Flentge CA; Randolph JT; Zhao C; Sun M; Dekhtyar T; Stoll VS; Kempf DJ
    Bioorg Med Chem Lett; 2005 May; 15(9):2275-8. PubMed ID: 15837308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir.
    Yu Y; Wang J; Shao Q; Shi J; Zhu W
    Sci Rep; 2015 May; 5():10517. PubMed ID: 26012849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amprenavir resistance imparted by the I50V mutation in HIV-1 protease can be suppressed by the N88S mutation.
    Lam E; Parkin NT
    Clin Infect Dis; 2003 Nov; 37(9):1273-4. PubMed ID: 14557976
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.