These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 30922842)
1. Inline flow sensor for ventriculoperitoneal shunts: Experimental evaluation in swine. Qin C; Olivencia-Yurvati AH; Williams AG; Eskildsen D; Mallet RT; Dasgupta PK Med Eng Phys; 2019 May; 67():66-72. PubMed ID: 30922842 [TBL] [Abstract][Full Text] [Related]
2. Ventriculoperitoneal shunt of continuous flow vs valvular shunt for treatment of hydrocephalus in adults. Sotelo J; Arriada N; López MA Surg Neurol; 2005 Mar; 63(3):197-203; discussion 203. PubMed ID: 15734497 [TBL] [Abstract][Full Text] [Related]
3. Hydrocephalus and Ventriculoperitoneal Shunts: Modes of Failure and Opportunities for Improvement. Jorgensen J; Williams C; Sarang-Sieminski A Crit Rev Biomed Eng; 2016; 44(1-2):91-7. PubMed ID: 27652453 [TBL] [Abstract][Full Text] [Related]
4. Parylene MEMS patency sensor for assessment of hydrocephalus shunt obstruction. Kim BJ; Jin W; Baldwin A; Yu L; Christian E; Krieger MD; McComb JG; Meng E Biomed Microdevices; 2016 Oct; 18(5):87. PubMed ID: 27589973 [TBL] [Abstract][Full Text] [Related]
5. Development of an In Vitro Hemorrhagic Hydrocephalus Model for Functional Evaluation of Magnetic Microactuators Against Shunt Obstructions. Devathasan D; Bentley RT; Enriquez A; Yang Q; Thomovsky SA; Thompson C; Lee AE; Lee H World Neurosurg; 2021 Nov; 155():e294-e300. PubMed ID: 34418611 [TBL] [Abstract][Full Text] [Related]
6. Valved or valveless ventriculoperitoneal shunting in the treatment of post-haemorrhagic hydrocephalus: a population-based consecutive cohort study. Andreasen TH; Holst AV; Lilja A; Andresen M; Bartek J; Eskesen V; Juhler M Acta Neurochir (Wien); 2016 Feb; 158(2):261-70; discussion 270. PubMed ID: 26668079 [TBL] [Abstract][Full Text] [Related]
7. An updated model of hydrocephalus in sheep to evaluate the performance of a device for ambulatory wireless monitoring of cerebral pressure through shunts. Perrotte M; Lazardeux J; Sistiaga PP; Chazalviel L; Saulnier R; Metayer T; Isnard C; Emery E; Auvray P; Vivien D; Gaberel T Neurochirurgie; 2022 Apr; 68(3):300-308. PubMed ID: 34774581 [TBL] [Abstract][Full Text] [Related]
8. Optimization of a Thermal Flow Meter for Failure Management of the Shunt in Pediatric Hydrocephalus Patients Charles Chen Z; Gary A; Gupta V; Grant G; Fan RE Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1551-1556. PubMed ID: 34891580 [TBL] [Abstract][Full Text] [Related]
9. Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. Penn RD; Basati S; Sweetman B; Guo X; Linninger A J Neurosurg; 2011 Jul; 115(1):159-64. PubMed ID: 21275563 [TBL] [Abstract][Full Text] [Related]
10. Bone Overgrowth Causing Proximal Ventriculoperitoneal Shunt Malfunction. Kim M; Rybkin I; Smith H; Cooper J; Tobias M World Neurosurg; 2019 Jan; 121():127-130. PubMed ID: 30321672 [TBL] [Abstract][Full Text] [Related]
11. A search for determinants of cerebrospinal fluid shunt survival: retrospective analysis of a 14-year institutional experience. Piatt JH; Carlson CV Pediatr Neurosurg; 1993; 19(5):233-41; discussion 242. PubMed ID: 8398847 [TBL] [Abstract][Full Text] [Related]
12. Failure of cerebrospinal fluid shunts: part II: overdrainage, loculation, and abdominal complications. Browd SR; Gottfried ON; Ragel BT; Kestle JR Pediatr Neurol; 2006 Mar; 34(3):171-6. PubMed ID: 16504785 [TBL] [Abstract][Full Text] [Related]
13. Intraoperative ultrasound guidance for the placement of permanent ventricular cerebrospinal fluid shunt catheters: a single-center historical cohort study. Crowley RW; Dumont AS; Asthagiri AR; Torner JC; Medel R; Jane JA; Jane JA; Kassell NF World Neurosurg; 2014 Feb; 81(2):397-403. PubMed ID: 23321382 [TBL] [Abstract][Full Text] [Related]
14. A novel ventriculoperitoneal shunt flow sensor based on electrically induced spatial variation in cerebrospinal fluid charge density. Zarrin DA; Jafari M; Kim W; Colby GP Front Bioeng Biotechnol; 2023; 11():1339831. PubMed ID: 38283172 [No Abstract] [Full Text] [Related]
15. Noninvasive cerebrospinal fluid shunt flow measurement by Doppler ultrasound using ultrasonically excited bubbles: a feasibility study. Lam KW; Drake JM; Cobbold RS Ultrasound Med Biol; 1999 Mar; 25(3):371-89. PubMed ID: 10374981 [TBL] [Abstract][Full Text] [Related]
16. Hydrocephalus and shunts in children with brain tumors. Ryan JA; Shiminski-Maher T J Pediatr Oncol Nurs; 1995 Oct; 12(4):223-9. PubMed ID: 7495527 [TBL] [Abstract][Full Text] [Related]
17. Scalp necrosis overlying a ventriculoperitoneal shunt: a case report and literature review. Nguyen TA; Cohen PR Dermatol Online J; 2015 Oct; 21(10):. PubMed ID: 26632796 [TBL] [Abstract][Full Text] [Related]
18. Ultrasound guided placement of the distal catheter in paediatric ventriculoatrial shunts-an appraisal of efficacy and complications. Clark DJ; Chakraborty A; Roebuck DJ; Thompson DN Childs Nerv Syst; 2016 Jul; 32(7):1219-25. PubMed ID: 27207611 [TBL] [Abstract][Full Text] [Related]
19. Intraperitoneal cerebrospinal fluid pseudocyst with ventriculoperitoneal shunt. Masoudi MS; Rasafian M; Naghmehsanj Z; Ghaffarpasand F Afr J Paediatr Surg; 2017; 14(3):56-58. PubMed ID: 29557353 [TBL] [Abstract][Full Text] [Related]
20. Ventriculoperitoneal shunts for hydrocephalus: a focus group discussion on the selection of shunt systems in pediatrics. A report of the Pediatric Neurosurgery Research Group meeting, December 1992. James HE; Bruce DA Childs Nerv Syst; 1995 Aug; 11(8):449-51; discussion 452. PubMed ID: 7585680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]