BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30923111)

  • 21. Linear-to-branched micelles transition: a rheometry and diffusing wave spectroscopy (DWS) study.
    Oelschlaeger C; Schopferer M; Scheffold F; Willenbacher N
    Langmuir; 2009 Jan; 25(2):716-23. PubMed ID: 19138157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent developments in emulsion characterization: Diffusing Wave Spectroscopy beyond average values.
    Lorusso V; Orsi D; Salerni F; Liggieri L; Ravera F; McMillin R; Ferri J; Cristofolini L
    Adv Colloid Interface Sci; 2021 Feb; 288():102341. PubMed ID: 33359963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Application of Diffusing-Wave Spectroscopy to Monitor the Phase Behavior of Emulsion-Polysaccharide Systems.
    ten Grotenhuis E ; Paques M; van Aken GA
    J Colloid Interface Sci; 2000 Jul; 227(2):495-504. PubMed ID: 10873338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring of flocculation and creaming of sodium-caseinate-stabilized emulsions using diffusing-wave spectroscopy.
    Hemar Y; Pinder DN; Hunter RJ; Singh H; Hébraud P; Horne DS
    J Colloid Interface Sci; 2003 Aug; 264(2):502-8. PubMed ID: 16256671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Introduction of diffusing wave spectroscopy to study self-emulsifying drug delivery systems with respect to liquid filling of capsules.
    Niederquell A; Völker AC; Kuentz M
    Int J Pharm; 2012 Apr; 426(1-2):144-152. PubMed ID: 22310462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffusing wave spectroscopy microrheology of actin filament networks.
    Palmer A; Xu J; Kuo SC; Wirtz D
    Biophys J; 1999 Feb; 76(2):1063-71. PubMed ID: 9916038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelasticity and interface bending properties of lecithin reverse wormlike micelles studied by diffusive wave spectroscopy in hydrophobic environment.
    Martiel I; Sagalowicz L; Mezzenga R
    Langmuir; 2014 Sep; 30(35):10751-9. PubMed ID: 25136893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microrheology of DNA hydrogels.
    Xing Z; Caciagli A; Cao T; Stoev I; Zupkauskas M; O'Neill T; Wenzel T; Lamboll R; Liu D; Eiser E
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8137-8142. PubMed ID: 30045862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microrheology of polymeric solutions using x-ray photon correlation spectroscopy.
    Papagiannopoulos A; Waigh TA; Fluerasu A; Fernyhough C; Madsen A
    J Phys Condens Matter; 2005 Jun; 17(25):L279-85. PubMed ID: 21690690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microstructural investigation of an industrial attractive gel at pressure and temperature.
    Clarke A; Jamie E; Burger NA; Loppinet B; Petekidis G
    Soft Matter; 2022 May; 18(20):3941-3954. PubMed ID: 35551329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signature of jamming under steady shear in dense particulate suspensions.
    Dhar S; Chattopadhyay S; Majumdar S
    J Phys Condens Matter; 2020 Mar; 32(12):124002. PubMed ID: 31770741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in the microrheology of complex fluids.
    Waigh TA
    Rep Prog Phys; 2016 Jul; 79(7):074601. PubMed ID: 27245584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microrheology with fluorescence correlation spectroscopy.
    Rathgeber S; Beauvisage HJ; Chevreau H; Willenbacher N; Oelschlaeger C
    Langmuir; 2009 Jun; 25(11):6368-76. PubMed ID: 19425563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B.
    Knudsen JC; Øgendal LH; Skibsted LH
    Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison on the effect of high-methoxyl pectin or soybean-soluble polysaccharide on the stability of sodium caseinate-stabilized oil/water emulsions.
    Liu J; Verespej E; Alexander M; Corredig M
    J Agric Food Chem; 2007 Jul; 55(15):6270-8. PubMed ID: 17608491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melting behavior of shear-induced crystals in dense emulsions as investigated by time-resolved light scattering.
    Freiberger N; Medebach M; Glatter O
    J Phys Chem B; 2008 Oct; 112(40):12635-43. PubMed ID: 18793014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probe size effects on the microrheology of associating polymer solutions.
    Lu Q; Solomon MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061504. PubMed ID: 12513289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of Microrheology in Food Science.
    Yang N; Lv R; Jia J; Nishinari K; Fang Y
    Annu Rev Food Sci Technol; 2017 Feb; 8():493-521. PubMed ID: 28125345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diffusing wave spectroscopy study of the colloidal interactions occurring between casein micelles and emulsion droplets: comparison to hard-sphere behavior.
    Gaygadzhiev Z; Corredig M; Alexander M
    Langmuir; 2008 Apr; 24(8):3794-800. PubMed ID: 18324850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crossover between entropic and interfacial elasticity and osmotic pressure in uniform disordered emulsions.
    Mason TG; Scheffold F
    Soft Matter; 2014 Sep; 10(36):7109-16. PubMed ID: 25111129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.