These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30923414)

  • 1. Obstacle Detection with the Long Cane: Effect of Cane Tip Design and Technique Modification on Performance.
    Kim DS; Emerson RW
    J Vis Impair Blind; 2018; 112(5):435-446. PubMed ID: 30923414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ergonomic factors related to drop-off detection with the long cane: effects of cane tips and techniques.
    Kim DS; Emerson RS; Curtis AB
    Hum Factors; 2010 Jun; 52(3):456-65. PubMed ID: 21077566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cane length and swing arc width on drop-off and obstacle detection with the long cane.
    Kim DS; Emerson RW; Naghshineh K
    Br J Vis Impair; 2017 Sep; 35(3):217-231. PubMed ID: 29276326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drop-off detection with the long cane: effect of cane shaft weight and rigidity on performance.
    Kim DS; Wall Emerson R; Naghshineh K; Auer A
    Ergonomics; 2017 Jan; 60(1):59-68. PubMed ID: 27065052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving obstacle detection by redesign of walking canes for blind persons.
    Schellingerhout R; Bongers RM; van Grinsven R; Smitsman AW; Van Galen GP
    Ergonomics; 2001 Apr; 44(5):513-26. PubMed ID: 11345494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of Long Cane Use.
    Emerson RW; Kim DS; Naghshineh K; Myers KR
    J Vis Impair Blind; 2019 May; 113(3):235-247. PubMed ID: 33828348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drop-off Detection with the Long Cane: Effects of Different Cane Techniques on Performance.
    Kim DS; Emerson RW; Curtis A
    J Vis Impair Blind; 2009 Sep; 103(9):519-530. PubMed ID: 21209791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of user characteristics related to drop-off detection with long cane.
    Kim DS; Emerson RW; Curtis A
    J Rehabil Res Dev; 2010; 47(3):233-42. PubMed ID: 20665349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Augmented White Cane with obstacle height and distance feedback.
    Pyun R; Kim Y; Wespe P; Gassert R; Schneller S
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650358. PubMed ID: 24187177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tom Pouce III, an Electronic White Cane for Blind People: Ability to Detect Obstacles and Mobility Performances.
    Dernayka A; Amorim MA; Leroux R; Bogaert L; Farcy R
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the effects of white cane variables on step symmetry of blind individuals.
    Rasouli Kahaki Z; Razeghi M; Karimi MT; Sanjari MA; Safarpour AR; Choobineh A
    Oman J Ophthalmol; 2023; 16(2):298-304. PubMed ID: 37602151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detachable electronic device for use with a long white cane to assist with mobility.
    O'Brien EE; Mohtar AA; Diment LE; Reynolds KJ
    Assist Technol; 2014; 26(4):219-26. PubMed ID: 25771607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Virtual White Cane Network for navigating people with visual impairment.
    Gao Y; Chandrawanshi R; Nau AC; Tse ZT
    Proc Inst Mech Eng H; 2015 Sep; 229(9):681-8. PubMed ID: 26334037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new primary mobility tool for the visually impaired: A white cane-adaptive mobility device hybrid.
    Rizzo JR; Conti K; Thomas T; Hudson TE; Wall Emerson R; Kim DS
    Assist Technol; 2018; 30(5):219-225. PubMed ID: 28506151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects and feasibility of a standardised orientation and mobility training in using an identification cane for older adults with low vision: design of a randomised controlled trial.
    Zijlstra GA; van Rens GH; Scherder EJ; Brouwer DM; van der Velde J; Verstraten PF; Kempen GI
    BMC Health Serv Res; 2009 Aug; 9():153. PubMed ID: 19712448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing EEG signals to detect unexpected obstacles during walking.
    Salazar-Varas R; Costa Á; Iáñez E; Úbeda A; Hortal E; Azorín JM
    J Neuroeng Rehabil; 2015 Nov; 12():101. PubMed ID: 26577345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haptic Cues for Balance: Use of a Cane Provides Immediate Body Stabilization.
    Sozzi S; Crisafulli O; Schieppati M
    Front Neurosci; 2017; 11():705. PubMed ID: 29311785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction Effects of the Amount of Practice, Preferred Cane Technique, and Type of Cane Technique Used on Drop-off Detection Performance.
    Kim DS; Emerson RW; Curtis A
    J Vis Impair Blind; 2010 Aug; 104(8):453-463. PubMed ID: 21532977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.