These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30923531)

  • 1. Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis.
    Klemenčič M; Asplund-Samuelsson J; Dolinar M; Funk C
    Front Plant Sci; 2019; 10():293. PubMed ID: 30923531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights Into the Phylogenetic Distribution, Diversity, Structural Attributes, and Substrate Specificity of Putative Cyanobacterial Orthocaspases.
    Bhattacharjee S; Kharwar S; Mishra AK
    Front Microbiol; 2021; 12():682306. PubMed ID: 34276616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional diversity of caspase homologues in non-metazoan organisms.
    Klemenčič M; Funk C
    Protoplasma; 2018 Jan; 255(1):387-397. PubMed ID: 28744694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Pseudo-Orthocaspase (SyOC) of
    Lema A S; Klemenčič M; Völlmy F; Altelaar M; Funk C
    Front Microbiol; 2021; 12():634366. PubMed ID: 33613507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs.
    Asplund-Samuelsson J
    Mol Microbiol; 2015 Oct; 98(1):1-6. PubMed ID: 26123017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide comparative analysis of metacaspases in unicellular and filamentous cyanobacteria.
    Jiang Q; Qin S; Wu QY
    BMC Genomics; 2010 Mar; 11():198. PubMed ID: 20334693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthocaspases are proteolytically active prokaryotic caspase homologues: the case of Microcystis aeruginosa.
    Klemenčič M; Novinec M; Dolinar M
    Mol Microbiol; 2015 Oct; 98(1):142-50. PubMed ID: 26114948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.
    Asplund-Samuelsson J; Bergman B; Larsson J
    PLoS One; 2012; 7(11):e49888. PubMed ID: 23185476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico insight of cell-death-related proteins in photosynthetic cyanobacteria.
    Ghag SB; D'Souza JS
    Arch Microbiol; 2022 Jul; 204(8):511. PubMed ID: 35864385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.
    Gupta RS
    Mol Biol Evol; 2012 Nov; 29(11):3397-412. PubMed ID: 22628531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tale of caspase homologues and their evolutionary outlook: deciphering programmed cell death in cyanobacteria.
    Bhattacharjee S; Mishra AK
    J Exp Bot; 2020 Aug; 71(16):4639-4657. PubMed ID: 32369588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis.
    Gupta RS; Mukhtar T; Singh B
    Mol Microbiol; 1999 Jun; 32(5):893-906. PubMed ID: 10361294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prokaryotic carbonic anhydrases.
    Smith KS; Ferry JG
    FEMS Microbiol Rev; 2000 Oct; 24(4):335-66. PubMed ID: 10978542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic tools for cyanobacteria.
    Koksharova OA; Wolk CP
    Appl Microbiol Biotechnol; 2002 Feb; 58(2):123-37. PubMed ID: 11876404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades.
    Gupta RS
    Int J Syst Evol Microbiol; 2009 Oct; 59(Pt 10):2510-26. PubMed ID: 19622649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria.
    Rogers MB; Patron NJ; Keeling PJ
    BMC Biol; 2007 Jun; 5():26. PubMed ID: 17584924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phylogenetically novel cyanobacterium most closely related to Gloeobacter.
    Grettenberger CL; Sumner DY; Wall K; Brown CT; Eisen JA; Mackey TJ; Hawes I; Jospin G; Jungblut AD
    ISME J; 2020 Aug; 14(8):2142-2152. PubMed ID: 32424249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanophage infection and photoinhibition in marine cyanobacteria.
    Bailey S; Clokie MR; Millard A; Mann NH
    Res Microbiol; 2004 Nov; 155(9):720-5. PubMed ID: 15501648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation into the effects of increasing salinity on photosynthesis in freshwater unicellular cyanobacteria during the late Archaean.
    Herrmann AJ; Gehringer MM
    Geobiology; 2019 Jul; 17(4):343-359. PubMed ID: 30874335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes.
    Cheng Z; Sattler S; Maeda H; Sakuragi Y; Bryant DA; DellaPenna D
    Plant Cell; 2003 Oct; 15(10):2343-56. PubMed ID: 14508009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.