BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30923568)

  • 1. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of
    Li X; He Y; Zhang L; Xu Z; Ben H; Gaffrey MJ; Yang Y; Yang S; Yuan JS; Qian WJ; Yang B
    Biotechnol Biofuels; 2019; 12():60. PubMed ID: 30923568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci.
    He Y; Li X; Xue X; Swita MS; Schmidt AJ; Yang B
    Bioresour Technol; 2017 Jan; 224():457-464. PubMed ID: 27806887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unleashing the capacity of Rhodococcus for converting lignin into lipids.
    Zhao ZM; Liu ZH; Zhang T; Meng R; Gong Z; Li Y; Hu J; Ragauskas AJ; Li BZ; Yuan YJ
    Biotechnol Adv; 2024; 70():108274. PubMed ID: 37913947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of lignin model compounds with oleaginous Rhodococci.
    Kosa M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):891-900. PubMed ID: 22159607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and
    Spence EM; Scott HT; Dumond L; Calvo-Bado L; di Monaco S; Williamson JJ; Persinoti GF; Squina FM; Bugg TDH
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32737130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.
    Xiong X; Wang X; Chen S
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production.
    Xiong X; Lian J; Yu X; Garcia-Perez M; Chen S
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1551-1560. PubMed ID: 27558782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of a xylose metabolic pathway in Rhodococcus strains.
    Xiong X; Wang X; Chen S
    Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
    Holder JW; Ulrich JC; DeBono AC; Godfrey PA; Desjardins CA; Zucker J; Zeng Q; Leach AL; Ghiviriga I; Dancel C; Abeel T; Gevers D; Kodira CD; Desany B; Affourtit JP; Birren BW; Sinskey AJ
    PLoS Genet; 2011 Sep; 7(9):e1002219. PubMed ID: 21931557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing lipid production using an NADP
    Hernández MA; Alvarez HM
    Microbiology (Reading); 2019 Jan; 165(1):4-14. PubMed ID: 30372408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion.
    Liu ZH; Xie S; Lin F; Jin M; Yuan JS
    Biotechnol Biofuels; 2018; 11():21. PubMed ID: 29422949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 13. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production.
    Herrero OM; Moncalián G; Alvarez HM
    Microbiology (Reading); 2016 Feb; 162(2):384-397. PubMed ID: 26732874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the Metabolism of Oleaginous
    Alvarez HM; Herrero OM; Silva RA; Hernández MA; Lanfranconi MP; Villalba MS
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31324625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440.
    Xu Z; Pan C; Li X; Hao N; Zhang T; Gaffrey MJ; Pu Y; Cort JR; Ragauskas AJ; Qian WJ; Yang B
    Biotechnol Biofuels; 2021 Jan; 14(1):11. PubMed ID: 33413621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin.
    Spence EM; Calvo-Bado L; Mines P; Bugg TDH
    Microb Cell Fact; 2021 Jan; 20(1):15. PubMed ID: 33468127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing redox proteomics to study metabolic regulation and stress response in lignin-fed Rhodococci.
    Li X; Gluth A; Feng S; Qian WJ; Yang B
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):180. PubMed ID: 37986172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid metabolism of phenol-tolerant
    Henson WR; Hsu FF; Dantas G; Moon TS; Foston M
    Biotechnol Biofuels; 2018; 11():339. PubMed ID: 30607174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of endogenous multi-copper oxidases mcoA and mcoC in Rhodococcus jostii RHA1 enhances lignin bioconversion to 2,4-pyridine-dicarboxylic acid.
    Rashid GMM; Sodré V; Luo J; Bugg TDH
    Biotechnol Bioeng; 2024 Apr; 121(4):1366-1370. PubMed ID: 38079064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodococcus bacteria as a promising source of oils from olive mill wastes.
    Herrero OM; Villalba MS; Lanfranconi MP; Alvarez HM
    World J Microbiol Biotechnol; 2018 Jul; 34(8):114. PubMed ID: 29992446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.