These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30923821)

  • 1. epic2 efficiently finds diffuse domains in ChIP-seq data.
    Stovner EB; Sætrom P
    Bioinformatics; 2019 Nov; 35(21):4392-4393. PubMed ID: 30923821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RECAP reveals the true statistical significance of ChIP-seq peak calls.
    Chitpin JG; Awdeh A; Perkins TJ
    Bioinformatics; 2019 Oct; 35(19):3592-3598. PubMed ID: 30824903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NoPeak: k-mer-based motif discovery in ChIP-Seq data without peak calling.
    Menzel M; Hurka S; Glasenhardt S; Gogol-Döring A
    Bioinformatics; 2021 May; 37(5):596-602. PubMed ID: 32991679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DiffChIPL: a differential peak analysis method for high-throughput sequencing data with biological replicates based on limma.
    Chen Y; Chen S; Lei EP
    Bioinformatics; 2022 Sep; 38(17):4062-4069. PubMed ID: 35809062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using combined evidence from replicates to evaluate ChIP-seq peaks.
    Jalili V; Matteucci M; Masseroli M; Morelli MJ
    Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive and robust assessment of ChIP-seq read distribution using a strand-shift profile.
    Nakato R; Shirahige K
    Bioinformatics; 2018 Jul; 34(14):2356-2363. PubMed ID: 29528371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BroadPeak: a novel algorithm for identifying broad peaks in diffuse ChIP-seq datasets.
    Wang J; Lunyak VV; Jordan IK
    Bioinformatics; 2013 Feb; 29(4):492-3. PubMed ID: 23300134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChIPWig: a random access-enabling lossless and lossy compression method for ChIP-seq data.
    Ravanmehr V; Kim M; Wang Z; Milenkovic O
    Bioinformatics; 2018 Mar; 34(6):911-919. PubMed ID: 29087447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the problem of confounders in modeling gene expression.
    Schmidt F; Schulz MH
    Bioinformatics; 2019 Feb; 35(4):711-719. PubMed ID: 30084962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ChIPseqSpikeInFree: a ChIP-seq normalization approach to reveal global changes in histone modifications without spike-in.
    Jin H; Kasper LH; Larson JD; Wu G; Baker SJ; Zhang J; Fan Y
    Bioinformatics; 2020 Feb; 36(4):1270-1272. PubMed ID: 31566663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible ChIP-sequencing simulation toolkit.
    Zheng A; Lamkin M; Qiu Y; Ren K; Goren A; Gymrek M
    BMC Bioinformatics; 2021 Apr; 22(1):201. PubMed ID: 33879052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments.
    Bailey SD; Virtanen C; Haibe-Kains B; Lupien M
    Bioinformatics; 2015 Sep; 31(18):3057-9. PubMed ID: 25995231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zerone: a ChIP-seq discretizer for multiple replicates with built-in quality control.
    Cuscó P; Filion GJ
    Bioinformatics; 2016 Oct; 32(19):2896-902. PubMed ID: 27288492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. annoPeak: a web application to annotate and visualize peaks from ChIP-seq/ChIP-exo-seq.
    Tang X; Srivastava A; Liu H; Machiraju R; Huang K; Leone G
    Bioinformatics; 2017 May; 33(10):1570-1571. PubMed ID: 28169395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WACS: improving ChIP-seq peak calling by optimally weighting controls.
    Awdeh A; Turcotte M; Perkins TJ
    BMC Bioinformatics; 2021 Feb; 22(1):69. PubMed ID: 33588754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of topic models to a compendium of ChIP-Seq datasets uncovers recurrent transcriptional regulatory modules.
    Yang G; Ma A; Qin ZS; Chen L
    Bioinformatics; 2020 Apr; 36(8):2352-2358. PubMed ID: 31899481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates.
    Newell R; Pienaar R; Balderson B; Piper M; Essebier A; Bodén M
    Genomics; 2021 Jul; 113(4):1855-1866. PubMed ID: 33878366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TFEA.ChIP: a tool kit for transcription factor binding site enrichment analysis capitalizing on ChIP-seq datasets.
    Puente-Santamaria L; Wasserman WW; Del Peso L
    Bioinformatics; 2019 Dec; 35(24):5339-5340. PubMed ID: 31347689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets for combinatory motif discovery.
    Li Y; Ni P; Zhang S; Li G; Su Z
    Bioinformatics; 2019 Nov; 35(22):4632-4639. PubMed ID: 31070745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LanceOtron: a deep learning peak caller for genome sequencing experiments.
    Hentges LD; Sergeant MJ; Cole CB; Downes DJ; Hughes JR; Taylor S
    Bioinformatics; 2022 Sep; 38(18):4255-4263. PubMed ID: 35866989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.