These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30923974)

  • 1. Suppression of Filament Overgrowth in Conductive Bridge Random Access Memory by Ta
    Yu J; Xu X; Gong T; Luo Q; Dong D; Yuan P; Tai L; Yin J; Zhu X; Wu X; Lv H; Liu M
    Nanoscale Res Lett; 2019 Mar; 14(1):111. PubMed ID: 30923974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster-Type Filaments Induced by Doping in Low-Operation-Current Conductive Bridge Random Access Memory.
    Sun Y; Song C; Yin S; Qiao L; Wan Q; Liu J; Wang R; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29481-29486. PubMed ID: 32490665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive-bridging random access memory: challenges and opportunity for 3D architecture.
    Jana D; Roy S; Panja R; Dutta M; Rahaman SZ; Mahapatra R; Maikap S
    Nanoscale Res Lett; 2015; 10():188. PubMed ID: 25977660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical Analysis of Uniform Switching Characteristics of Ta
    Jin S; Kwon JD; Kim Y
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of in Situ Silver Migration in Amorphous Boron Nitride CBRAM Device.
    Jeon YR; Abbas Y; Sokolov AS; Kim S; Ku B; Choi C
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23329-23336. PubMed ID: 31252457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen Concentration Effect on Conductive Bridge Random Access Memory of InWZnO Thin Film.
    Hsu CC; Liu PT; Gan KJ; Ruan DB; Sze SM
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Control of Oxygen Vacancies in TaO
    Egorov KV; Kuzmichev DS; Chizhov PS; Lebedinskii YY; Hwang CS; Markeev AM
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13286-13292. PubMed ID: 28350159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer.
    Zhao X; Liu S; Niu J; Liao L; Liu Q; Xiao X; Lv H; Long S; Banerjee W; Li W; Si S; Liu M
    Small; 2017 Sep; 13(35):. PubMed ID: 28234422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance bi-layer atomic switching devices.
    Ju JH; Jang SK; Son H; Park JH; Lee S
    Nanoscale; 2017 Jun; 9(24):8373-8379. PubMed ID: 28594423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory.
    Cho H; Kim S
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32872514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-compliance-improved resistive switching using Ir/TaOx/W cross-point memory.
    Prakash A; Jana D; Samanta S; Maikap S
    Nanoscale Res Lett; 2013 Dec; 8(1):527. PubMed ID: 24341544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application.
    Gao S; Zeng F; Li F; Wang M; Mao H; Wang G; Song C; Pan F
    Nanoscale; 2015 Apr; 7(14):6031-8. PubMed ID: 25765948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dysprosium and lutetium metal buffer layers on the resistive switching characteristics of Cu-Sn alloy-based conductive-bridge random access memory.
    Vishwanath SK; Woo H; Jeon S
    Nanotechnology; 2018 Sep; 29(38):385207. PubMed ID: 29911987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable and Multilevel Data Storage Resistive Switching of Organic Bulk Heterojunction.
    Patil H; Kim H; Rehman S; Kadam KD; Aziz J; Khan MF; Kim DK
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33535529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic Magnetoresistance of Nano-conductive Filament in Co/HfO
    Li L; Liu Y; Teng J; Long S; Guo Q; Zhang M; Wu Y; Yu G; Liu Q; Lv H; Liu M
    Nanoscale Res Lett; 2017 Dec; 12(1):210. PubMed ID: 28335585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface.
    Rahaman SZ; Maikap S; Tien TC; Lee HY; Chen WS; Chen FT; Kao MJ; Tsai MJ
    Nanoscale Res Lett; 2012 Jun; 7(1):345. PubMed ID: 22734564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistive and New Optical Switching Memory Characteristics Using Thermally Grown Ge0.2Se0.8 Film in Cu/GeSex/W Structure.
    Jana D; Chakrabarti S; Rahaman SZ; Maikap S
    Nanoscale Res Lett; 2015 Dec; 10(1):392. PubMed ID: 26446075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory.
    Qin S; Liu Z; Zhang G; Zhang J; Sun Y; Wu H; Qian H; Yu Z
    Phys Chem Chem Phys; 2015 Apr; 17(14):8627-32. PubMed ID: 25750983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TaOx-based resistive switching memories: prospective and challenges.
    Prakash A; Jana D; Maikap S
    Nanoscale Res Lett; 2013 Oct; 8(1):418. PubMed ID: 24107610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering synaptic characteristics of TaO
    Kim S; Abbas Y; Jeon YR; Sokolov AS; Ku B; Choi C
    Nanotechnology; 2018 Oct; 29(41):415204. PubMed ID: 30051887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.