These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30924183)

  • 21. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.
    White DT; Eroglu AU; Wang G; Zhang L; Sengupta S; Ding D; Rajpurohit SK; Walker SL; Ji H; Qian J; Mumm JS
    Nat Protoc; 2016 Dec; 11(12):2432-2453. PubMed ID: 27831568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HTS-Corrector: software for the statistical analysis and correction of experimental high-throughput screening data.
    Makarenkov V; Kevorkov D; Zentilli P; Gagarin A; Malo N; Nadon R
    Bioinformatics; 2006 Jun; 22(11):1408-9. PubMed ID: 16595559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling false discovery proportion in identification of drug-related adverse events from multiple system organ classes.
    Tan X; Liu GF; Zeng D; Wang W; Diao G; Heyse JF; Ibrahim JG
    Stat Med; 2019 Sep; 38(22):4378-4389. PubMed ID: 31313376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimal HTS Fingerprint Definitions by Using a Desirability Function and a Genetic Algorithm.
    Cortes Cabrera A; Petrone PM
    J Chem Inf Model; 2018 Mar; 58(3):641-646. PubMed ID: 29425455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An economic framework to prioritize confirmatory tests after a high-throughput screen.
    Swamidass SJ; Bittker JA; Bodycombe NE; Ryder SP; Clemons PA
    J Biomol Screen; 2010 Jul; 15(6):680-6. PubMed ID: 20547534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation.
    Brinster R; Köttgen A; Tayo BO; Schumacher M; Sekula P;
    BMC Bioinformatics; 2018 Mar; 19(1):78. PubMed ID: 29499647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Case studies of minimizing nonspecific inhibitors in HTS campaigns that use assay-ready plates.
    Liu Y; Beresini MH; Johnson A; Mintzer R; Shah K; Clark K; Schmidt S; Lewis C; Liimatta M; Elliott LO; Gustafson A; Heise CE
    J Biomol Screen; 2012 Feb; 17(2):225-36. PubMed ID: 21940710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal False Discovery Rate Control for Dependent Data.
    Xie J; Cai TT; Maris J; Li H
    Stat Interface; 2011; 4(4):417-430. PubMed ID: 23378870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Throughput Cell Toxicity Assays.
    Murray D; McWilliams L; Wigglesworth M
    Methods Mol Biol; 2016; 1439():245-62. PubMed ID: 27317000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing.
    Ignatiadis N; Klaus B; Zaugg JB; Huber W
    Nat Methods; 2016 Jul; 13(7):577-80. PubMed ID: 27240256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A classification approach for DNA methylation profiling with bisulfite next-generation sequencing data.
    Cheng L; Zhu Y
    Bioinformatics; 2014 Jan; 30(2):172-9. PubMed ID: 24273245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. False discovery rate estimation for large-scale homogeneous discrete p-values.
    Liang K
    Biometrics; 2016 Jun; 72(2):639-48. PubMed ID: 26492596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Empirical Bayes screening of many p-values with applications to microarray studies.
    Datta S; Datta S
    Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-stage designs for experiments with a large number of hypotheses.
    Zehetmayer S; Bauer P; Posch M
    Bioinformatics; 2005 Oct; 21(19):3771-7. PubMed ID: 16091414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. More Specific Signal Detection in Functional Magnetic Resonance Imaging by False Discovery Rate Control for Hierarchically Structured Systems of Hypotheses.
    Schildknecht K; Tabelow K; Dickhaus T
    PLoS One; 2016; 11(2):e0149016. PubMed ID: 26914144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Betamax: towards optimal sampling strategies for high-throughput screens.
    Grover D; Nunez-Iglesias J
    J Comput Biol; 2012 Jun; 19(6):776-84. PubMed ID: 22697247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies.
    Glickman ME; Rao SR; Schultz MR
    J Clin Epidemiol; 2014 Aug; 67(8):850-7. PubMed ID: 24831050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays.
    Zhang XD
    J Biomol Screen; 2007 Aug; 12(5):645-55. PubMed ID: 17517904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quick calculation for sample size while controlling false discovery rate with application to microarray analysis.
    Liu P; Hwang JT
    Bioinformatics; 2007 Mar; 23(6):739-46. PubMed ID: 17237060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical detection of EEG synchrony using empirical bayesian inference.
    Singh AK; Asoh H; Takeda Y; Phillips S
    PLoS One; 2015; 10(3):e0121795. PubMed ID: 25822617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.