These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30924212)

  • 1. Rapid Photolysis-Mediated Folding of Disulfide-Rich Peptides.
    Patil NA; Karas JA; Wade JD; Hossain MA; Tailhades J
    Chemistry; 2019 Jun; 25(36):8599-8603. PubMed ID: 30924212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding of conotoxins: formation of the native disulfide bridges during chemical synthesis and biosynthesis of Conus peptides.
    Bulaj G; Olivera BM
    Antioxid Redox Signal; 2008 Jan; 10(1):141-55. PubMed ID: 17961068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of oxidative folding methods for cysteine-rich peptides: a study of conotoxins containing three disulfide bridges.
    Steiner AM; Bulaj G
    J Pept Sci; 2011 Jan; 17(1):1-7. PubMed ID: 20814907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reagentless oxidative folding of disulfide-rich peptides catalyzed by an intramolecular diselenide.
    Steiner AM; Woycechowsky KJ; Olivera BM; Bulaj G
    Angew Chem Int Ed Engl; 2012 Jun; 51(23):5580-4. PubMed ID: 22454362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of the cysteine-rich conotoxin MrIA by using a 1,2,3-triazole as a disulfide bond mimetic.
    Gori A; Wang CI; Harvey PJ; Rosengren KJ; Bhola RF; Gelmi ML; Longhi R; Christie MJ; Lewis RJ; Alewood PF; Brust A
    Angew Chem Int Ed Engl; 2015 Jan; 54(4):1361-4. PubMed ID: 25483297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR-based mapping of disulfide bridges in cysteine-rich peptides: application to the mu-conotoxin SxIIIA.
    Walewska A; Skalicky JJ; Davis DR; Zhang MM; Lopez-Vera E; Watkins M; Han TS; Yoshikami D; Olivera BM; Bulaj G
    J Am Chem Soc; 2008 Oct; 130(43):14280-6. PubMed ID: 18831583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cosolvent-assisted oxidative folding of a bicyclic alpha-conotoxin ImI.
    Nielsen JS; Buczek P; Bulaj G
    J Pept Sci; 2004 May; 10(5):249-56. PubMed ID: 15160836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide models of four possible insulin folding intermediates with two disulfides.
    Jia XY; Guo ZY; Wang Y; Xu Y; Duan SS; Feng YM
    Protein Sci; 2003 Nov; 12(11):2412-9. PubMed ID: 14573855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Structure Determination of µ-Conotoxin PIIIA Isomers with Different Disulfide Connectivities.
    Heimer P; Schmitz T; Bäuml CA; Imhof D
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30346393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselective formation, using orthogonal cysteine protection, of an alpha-conotoxin dimer peptide containing four disulfide bonds.
    Cuthbertson A; Indrevoll B
    Org Lett; 2003 Aug; 5(16):2955-7. PubMed ID: 12889917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-nitroveratryl as a photocleavable thiol-protecting group for directed disulfide bond formation in the chemical synthesis of insulin.
    Karas JA; Scanlon DB; Forbes BE; Vetter I; Lewis RJ; Gardiner J; Separovic F; Wade JD; Hossain MA
    Chemistry; 2014 Jul; 20(31):9549-52. PubMed ID: 24957739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Synthesis of Human Insulin-Like Peptide-6.
    Wu F; Mayer JP; Zaykov AN; Zhang F; Liu F; DiMarchi RD
    Chemistry; 2016 Jul; 22(28):9777-83. PubMed ID: 27259101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of disulfide bonds in proteins and peptides.
    Bulaj G
    Biotechnol Adv; 2005 Jan; 23(1):87-92. PubMed ID: 15610970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated oxidative folding of cysteine/selenocysteine containing peptides: improving chemical synthesis of conotoxins.
    Walewska A; Zhang MM; Skalicky JJ; Yoshikami D; Olivera BM; Bulaj G
    Angew Chem Int Ed Engl; 2009; 48(12):2221-4. PubMed ID: 19206132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide structures of highly bridged peptides: a new strategy for analysis.
    Gray WR
    Protein Sci; 1993 Oct; 2(10):1732-48. PubMed ID: 8251945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishing regiocontrol of disulfide bond isomers of alpha-conotoxin ImI via the synthesis of N-to-C cyclic analogs.
    Armishaw CJ; Dutton JL; Craik DJ; Alewood PF
    Biopolymers; 2010; 94(3):307-13. PubMed ID: 20013812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical induced disulfide bond cleavage within peptides via ultraviolet irradiation of an electrospray plume.
    Stinson CA; Xia Y
    Analyst; 2013 May; 138(10):2840-6. PubMed ID: 23549113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and structure-forming properties of the two disulfide bonds of alpha-conotoxin GI.
    Kaerner A; Rabenstein DL
    Biochemistry; 1999 Apr; 38(17):5459-70. PubMed ID: 10220333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemical synthesis of α-conotoxins and structurally modified analogs with enhanced biological stability.
    Banerjee J; Gyanda R; Chang YP; Armishaw CJ
    Methods Mol Biol; 2013; 1081():13-34. PubMed ID: 24014431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conotoxins as research tools and drug leads.
    Armishaw CJ; Alewood PF
    Curr Protein Pept Sci; 2005 Jun; 6(3):221-40. PubMed ID: 15974949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.