BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30924507)

  • 1. Insights into in vitro biokinetics using Virtual Cell Based Assay simulations.
    Proença S; Paini A; Joossens E; Sala Benito JV; Berggren E; Worth A; Whelan M; Prieto P
    ALTEX; 2019; 36(3):447-461. PubMed ID: 30924507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical use of the Virtual Cell Based Assay: Simulation of repeated exposure experiments in liver cell lines.
    Paini A; Mennecozzi M; Horvat T; Gerloff K; Palosaari T; Sala Benito JV; Worth A
    Toxicol In Vitro; 2017 Dec; 45(Pt 2):233-240. PubMed ID: 27746372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual Cell Based Assay simulations of intra-mitochondrial concentrations in hepatocytes and cardiomyocytes.
    Worth AP; Louisse J; Macko P; Sala Benito JV; Paini A
    Toxicol In Vitro; 2017 Dec; 45(Pt 2):222-232. PubMed ID: 28911986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals.
    Gülden M; Seibert H
    Aquat Toxicol; 2005 May; 72(4):327-37. PubMed ID: 15848252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The virtual cell based assay: Current status and future perspectives.
    Graepel R; Lamon L; Asturiol D; Berggren E; Joossens E; Paini A; Prieto P; Whelan M; Worth A
    Toxicol In Vitro; 2017 Dec; 45(Pt 2):258-267. PubMed ID: 28108195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and mathematical foundation of the Virtual Cell Based Assay - A review.
    Comenges JMZ; Joossens E; Benito JVS; Worth A; Paini A
    Toxicol In Vitro; 2017 Dec; 45(Pt 2):209-221. PubMed ID: 27470131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated workflows for modelling chemical fate, kinetics and toxicity.
    Sala Benito JV; Paini A; Richarz AN; Meinl T; Berthold MR; Cronin MTD; Worth AP
    Toxicol In Vitro; 2017 Dec; 45(Pt 2):249-257. PubMed ID: 28323105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extension of the Virtual Cell Based Assay from a 2-D to a 3-D Cell Culture Model.
    Bednarczyk E; Lu Y; Paini A; Batista Leite S; van Grunsven LA; Worth A; Whelan M
    Altern Lab Anim; 2022 Jan; 50(1):45-56. PubMed ID: 35238679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
    Nendza M; Wenzel A
    Environ Sci Pollut Res Int; 2006 May; 13(3):192-203. PubMed ID: 16758710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration.
    Gülden M; Mörchel S; Seibert H
    Aquat Toxicol; 2005 Feb; 71(3):229-36. PubMed ID: 15670629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro toxicity testing with microplate cell cultures: Impact of cell binding.
    Gülden M; Schreiner J; Seibert H
    Toxicology; 2015 Jun; 332():41-51. PubMed ID: 24291469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro biokinetics of chlorpromazine and the influence of different dose metrics on effect concentrations for cytotoxicity in Balb/c 3T3, Caco-2 and HepaRG cell cultures.
    Broeders JJ; Blaauboer BJ; Hermens JL
    Toxicol In Vitro; 2013 Apr; 27(3):1057-64. PubMed ID: 23376437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and simulation for toxicity assessment.
    Anton C; Deng J; Wong YS; Zhang Y; Zhang W; Gabos S; Huang DY; Jin C
    Math Biosci Eng; 2017 Jun; 14(3):581-606. PubMed ID: 28092954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refinement and reduction of acute oral toxicity testing: a critical review of the use of cytotoxicity data.
    Schrage A; Hempel K; Schulz M; Kolle SN; van Ravenzwaay B; Landsiedel R
    Altern Lab Anim; 2011 Jul; 39(3):273-95. PubMed ID: 21777041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting points of departure for risk assessment based on in vitro cytotoxicity data and physiologically based kinetic (PBK) modeling: The case of kidney toxicity induced by aristolochic acid I.
    Abdullah R; Alhusainy W; Woutersen J; Rietjens IM; Punt A
    Food Chem Toxicol; 2016 Jun; 92():104-16. PubMed ID: 27016491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models.
    Proença S; Escher BI; Fischer FC; Fisher C; Grégoire S; Hewitt NJ; Nicol B; Paini A; Kramer NI
    Toxicol In Vitro; 2021 Jun; 73():105133. PubMed ID: 33662518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From in vitro to in vivo: Integration of the virtual cell based assay with physiologically based kinetic modelling.
    Paini A; Sala Benito JV; Bessems J; Worth AP
    Toxicol In Vitro; 2017 Dec; 45(Pt 2):241-248. PubMed ID: 28663056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biokinetic modeling and in vitro-in vivo extrapolations.
    Blaauboer BJ
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):242-52. PubMed ID: 20574900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VIVD: Virtual in vitro distribution model for the mechanistic prediction of intracellular concentrations of chemicals in in vitro toxicity assays.
    Fisher C; Siméon S; Jamei M; Gardner I; Bois YF
    Toxicol In Vitro; 2019 Aug; 58():42-50. PubMed ID: 30599189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.