BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30924639)

  • 1. Liposome-Encapsulated Curcumin-Loaded 3D Printed Scaffold for Bone Tissue Engineering.
    Sarkar N; Bose S
    ACS Appl Mater Interfaces; 2019 May; 11(19):17184-17192. PubMed ID: 30924639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micelle encapsulated curcumin and piperine-laden 3D printed calcium phosphate scaffolds enhance in vitro biological properties.
    Bose S; Sarkar N; Majumdar U
    Colloids Surf B Biointerfaces; 2023 Nov; 231():113563. PubMed ID: 37832173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds.
    Sarkar N; Bose S
    Acta Biomater; 2020 Sep; 114():407-420. PubMed ID: 32652224
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Bhattacharjee A; Jo Y; Bose S
    J Mater Chem B; 2023 May; 11(21):4725-4739. PubMed ID: 37171110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ginger and Garlic Extracts Enhance Osteogenesis in 3D Printed Calcium Phosphate Bone Scaffolds with Bimodal Pore Distribution.
    Bose S; Banerjee D; Vu AA
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):12964-12975. PubMed ID: 35263096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration.
    Zamani Y; Amoabediny G; Mohammadi J; Zandieh-Doulabi B; Klein-Nulend J; Helder MN
    Iran Biomed J; 2021 Mar; 25(2):78-87. PubMed ID: 33461289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival.
    Touri M; Moztarzadeh F; Osman NAA; Dehghan MM; Mozafari M
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():236-242. PubMed ID: 29519434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering.
    Li Y; Bai Y; Pan J; Wang H; Li H; Xu X; Fu X; Shi R; Luo Z; Li Y; Li Q; Fuh JYH; Wei S
    J Mater Chem B; 2019 Jan; 7(4):619-629. PubMed ID: 32254795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO
    Sa MW; Nguyen BB; Moriarty RA; Kamalitdinov T; Fisher JP; Kim JY
    Biotechnol Bioeng; 2018 Apr; 115(4):989-999. PubMed ID: 29240243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.