BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30924859)

  • 1. Effects of overexpression of STB5 in Saccharomyces cerevisiae on fatty acid biosynthesis, physiology and transcriptome.
    Bergman A; Vitay D; Hellgren J; Chen Y; Nielsen J; Siewers V
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30924859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated analysis of the yeast NADPH-regulator Stb5 reveals distinct differences in NADPH requirements and regulation in different states of yeast metabolism.
    Ouyang L; Holland P; Lu H; Bergenholm D; Nielsen J
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30107458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production.
    Larochelle M; Drouin S; Robert F; Turcotte B
    Mol Cell Biol; 2006 Sep; 26(17):6690-701. PubMed ID: 16914749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway.
    Cadière A; Galeote V; Dequin S
    FEMS Yeast Res; 2010 Nov; 10(7):819-27. PubMed ID: 20738406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS
    Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.
    Wu G; Xu Z; Jönsson LJ
    Microb Cell Fact; 2017 Nov; 16(1):199. PubMed ID: 29137634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production.
    Hong J; Park SH; Kim S; Kim SW; Hahn JS
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):211-223. PubMed ID: 30343427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The yeast transcription factor Stb5 acts as a negative regulator of autophagy by modulating cellular metabolism.
    Delorme-Axford E; Wen X; Klionsky DJ
    Autophagy; 2023 Oct; 19(10):2719-2732. PubMed ID: 37345792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae.
    Matsufuji Y; Nakagawa T; Fujimura S; Tani A; Nakagawa J
    J Basic Microbiol; 2010 Oct; 50(5):494-8. PubMed ID: 20806246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
    Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW
    Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New regulatory role of Znf1 in transcriptional control of pentose phosphate pathway and ATP synthesis for enhanced isobutanol and acid tolerance.
    Ali SA; Songdech P; Samakkarn W; Duangphakdee O; Soontorngun N
    Yeast; 2024 Jun; 41(6):401-417. PubMed ID: 38708451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis revealed the roles of YRR1 deletion in enhancing the vanillin resistance of Saccharomyces cerevisiae.
    Cao W; Zhao W; Yang B; Wang X; Shen Y; Wei T; Qin W; Li Z; Bao X
    Microb Cell Fact; 2021 Jul; 20(1):142. PubMed ID: 34301255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Deltasnf2 disruptant of Saccharomyces cerevisiae.
    Kamisaka Y; Tomita N; Kimura K; Kainou K; Uemura H
    Biochem J; 2007 Nov; 408(1):61-8. PubMed ID: 17688423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.
    Shin GH; Veen M; Stahl U; Lang C
    Yeast; 2012 Sep; 29(9):371-83. PubMed ID: 22926964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation.
    Hector RE; Bowman MJ; Skory CD; Cotta MA
    N Biotechnol; 2009 Oct; 26(3-4):171-80. PubMed ID: 19712762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.