These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30924972)

  • 1. Asymmetric 3D Elastic-Plastic Strain-Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking.
    Motlag M; Kumar P; Hu KY; Jin S; Li J; Shao J; Yi X; Lin YH; Walrath JC; Tong L; Huang X; Goldman RS; Ye L; Cheng GJ
    Adv Mater; 2019 May; 31(19):e1900597. PubMed ID: 30924972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure: an ab initio study.
    González-García A; López-Pérez W; González-Hernández R; Rodríguez JA; Milośević MV; Peeters FM
    J Phys Condens Matter; 2019 Jul; 31(26):265502. PubMed ID: 30840939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel Nanoshaping of Brittle Semiconductor Nanowires for Strained Electronics.
    Hu Y; Li J; Tian J; Xuan Y; Deng B; McNear KL; Lim DG; Chen Y; Yang C; Cheng GJ
    Nano Lett; 2016 Dec; 16(12):7536-7544. PubMed ID: 27960457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Surface Synthesis of Variable Bandgap Nanoporous Graphene.
    Wang D; Lu X; Arramel ; Yang M; Wu J; Wee ATS
    Small; 2021 Oct; 17(42):e2102246. PubMed ID: 34535956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.
    Huang P; Jing L; Zhu H; Gao X
    Acc Chem Res; 2013 Jan; 46(1):43-52. PubMed ID: 23143937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Shock Tuning Dynamic Interlayer Coupling in Graphene-Boron Nitride Moiré Superlattices.
    Kumar P; Liu J; Motlag M; Tong L; Hu Y; Huang X; Bandopadhyay A; Pati SK; Ye L; Irudayaraj J; Cheng GJ
    Nano Lett; 2019 Jan; 19(1):283-291. PubMed ID: 30525695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale strainability of graphene by laser shock-induced three-dimensional shaping.
    Li J; Chung TF; Chen YP; Cheng GJ
    Nano Lett; 2012 Sep; 12(9):4577-83. PubMed ID: 22876850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial engineering in graphene bandgap.
    Xu X; Liu C; Sun Z; Cao T; Zhang Z; Wang E; Liu Z; Liu K
    Chem Soc Rev; 2018 May; 47(9):3059-3099. PubMed ID: 29513306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tip-Mediated Bandgap Tuning for Monolayer Transition Metal Dichalcogenides.
    Lin MK; Chen GH; Ho CL; Chueh WC; Hlevyack JA; Kuo CN; Fu TY; Lin JJ; Lue CS; Chang WH; Takagi N; Arafune R; Chiang TC; Lin CL
    ACS Nano; 2022 Sep; 16(9):14918-14924. PubMed ID: 36036754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical Strain-Induced Photoresponse in Folded Graphene Superlattices.
    Sun RX; Guo QQ; Huo CF; Yan XQ; Liu ZB; Tian JG
    ACS Appl Mater Interfaces; 2021 May; 13(18):21573-21581. PubMed ID: 33929842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical prediction of sandwiched two-dimensional phosphide binary compound sheets with tunable bandgaps and anisotropic physical properties.
    Zhang CY; Yu M
    Nanotechnology; 2018 Mar; 29(9):095703. PubMed ID: 29368692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A First-Principles Study of Nonlinear Elastic Behavior and Anisotropic Electronic Properties of Two-Dimensional HfS
    Faghihnasiri M; Ahmadi A; Alvankar Golpayegan S; Garosi Sharifabadi S; Ramazani A
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32121550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetry induced semimetal-semiconductor transition in doped graphene.
    Sirikumara HI; Putz E; Al-Abboodi M; Jayasekera T
    Sci Rep; 2016 Jan; 6():19115. PubMed ID: 26781061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Structure and Bandgap Control of 2D GaN Grown on Graphene/Si Heterostructures.
    Wang W; Li Y; Zheng Y; Li X; Huang L; Li G
    Small; 2019 Apr; 15(14):e1802995. PubMed ID: 30821114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence.
    Jeon KJ; Lee Z; Pollak E; Moreschini L; Bostwick A; Park CM; Mendelsberg R; Radmilovic V; Kostecki R; Richardson TJ; Rotenberg E
    ACS Nano; 2011 Feb; 5(2):1042-6. PubMed ID: 21204572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties.
    Bafekry A; Shojaei F; Obeid MM; Ghergherehchi M; Nguyen C; Oskouian M
    RSC Adv; 2020 Aug; 10(53):31894-31900. PubMed ID: 35518134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bandgap tunability at single-layer molybdenum disulphide grain boundaries.
    Huang YL; Chen Y; Zhang W; Quek SY; Chen CH; Li LJ; Hsu WT; Chang WH; Zheng YJ; Chen W; Wee AT
    Nat Commun; 2015 Feb; 6():6298. PubMed ID: 25687991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep elastic strain engineering of bandgap through machine learning.
    Shi Z; Tsymbalov E; Dao M; Suresh S; Shapeev A; Li J
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4117-4122. PubMed ID: 30770444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.