These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 30925079)

  • 1. Tolerances of
    Panitz C; Frösler J; Wingender J; Flemming HC; Rettberg P
    Astrobiology; 2019 Aug; 19(8):979-994. PubMed ID: 30925079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions.
    Frösler J; Panitz C; Wingender J; Flemming HC; Rettberg P
    Astrobiology; 2017 May; 17(5):431-447. PubMed ID: 28520474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dried Biofilms of Desert Strains of
    Billi D; Staibano C; Verseux C; Fagliarone C; Mosca C; Baqué M; Rabbow E; Rettberg P
    Astrobiology; 2019 Aug; 19(8):1008-1017. PubMed ID: 30741568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission.
    Ott E; Kawaguchi Y; Kölbl D; Rabbow E; Rettberg P; Mora M; Moissl-Eichinger C; Weckwerth W; Yamagishi A; Milojevic T
    Microbiome; 2020 Oct; 8(1):150. PubMed ID: 33121542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preservation of Biomarkers from Cyanobacteria Mixed with Mars-Like Regolith Under Simulated Martian Atmosphere and UV Flux.
    Baqué M; Verseux C; Böttger U; Rabbow E; de Vera JP; Billi D
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):289-310. PubMed ID: 26530341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations.
    Baqué M; Scalzi G; Rabbow E; Rettberg P; Billi D
    Orig Life Evol Biosph; 2013 Oct; 43(4-5):377-89. PubMed ID: 23955666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS.
    de Vera JP; Alawi M; Backhaus T; Baqué M; Billi D; Böttger U; Berger T; Bohmeier M; Cockell C; Demets R; de la Torre Noetzel R; Edwards H; Elsaesser A; Fagliarone C; Fiedler A; Foing B; Foucher F; Fritz J; Hanke F; Herzog T; Horneck G; Hübers HW; Huwe B; Joshi J; Kozyrovska N; Kruchten M; Lasch P; Lee N; Leuko S; Leya T; Lorek A; Martínez-Frías J; Meessen J; Moritz S; Moeller R; Olsson-Francis K; Onofri S; Ott S; Pacelli C; Podolich O; Rabbow E; Reitz G; Rettberg P; Reva O; Rothschild L; Sancho LG; Schulze-Makuch D; Selbmann L; Serrano P; Szewzyk U; Verseux C; Wadsworth J; Wagner D; Westall F; Wolter D; Zucconi L
    Astrobiology; 2019 Feb; 19(2):145-157. PubMed ID: 30742496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit.
    Stalport F; Rouquette L; Poch O; Dequaire T; Chaouche-Mechidal N; Payart S; Szopa C; Coll P; Chaput D; Jaber M; Raulin F; Cottin H
    Astrobiology; 2019 Aug; 19(8):1037-1052. PubMed ID: 31314573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The possible interplanetary transfer of microbes: assessing the viability of Deinococcus spp. under the ISS Environmental conditions for performing exposure experiments of microbes in the Tanpopo mission.
    Kawaguchi Y; Yang Y; Kawashiri N; Shiraishi K; Takasu M; Narumi I; Satoh K; Hashimoto H; Nakagawa K; Tanigawa Y; Momoki YH; Tanabe M; Sugino T; Takahashi Y; Shimizu Y; Yoshida S; Kobayashi K; Yokobori S; Yamagishi A
    Orig Life Evol Biosph; 2013 Oct; 43(4-5):411-28. PubMed ID: 24132659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of Growth and Ultrastructural Effects of the Xanthoria elegans Photobiont After 1.5 Years of Space Exposure on the International Space Station.
    Brandt A; Posthoff E; de Vera JP; Onofri S; Ott S
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):311-21. PubMed ID: 26526425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.
    Wassmann M; Moeller R; Rabbow E; Panitz C; Horneck G; Reitz G; Douki T; Cadet J; Stan-Lotter H; Cockell CS; Rettberg P
    Astrobiology; 2012 May; 12(5):498-507. PubMed ID: 22680695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimicrobial Kombucha Culture Tolerates Mars-Like Conditions Simulated on Low-Earth Orbit.
    Podolich O; Kukharenko O; Haidak A; Zaets I; Zaika L; Storozhuk O; Palchikovska L; Orlovska I; Reva O; Borisova T; Khirunenko L; Sosnin M; Rabbow E; Kravchenko V; Skoryk M; Kremenskoy M; Demets R; Olsson-Francis K; Kozyrovska N; de Vera JP
    Astrobiology; 2019 Feb; 19(2):183-196. PubMed ID: 30484685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station.
    Napoli A; Micheletti D; Pindo M; Larger S; Cestaro A; de Vera JP; Billi D
    Sci Rep; 2022 May; 12(1):8437. PubMed ID: 35589950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregated Cell Masses Provide Protection against Space Extremes and a Microhabitat for Hitchhiking Co-Inhabitants.
    Wadsworth J; Rettberg P; Cockell CS
    Astrobiology; 2019 Aug; 19(8):995-1007. PubMed ID: 31194575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues.
    Rettberg P; Rabbow E; Panitz C; Horneck G
    Adv Space Res; 2004; 33(8):1294-301. PubMed ID: 15803617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.
    Noblet A; Stalport F; Guan YY; Poch O; Coll P; Szopa C; Cloix M; Macari F; Raulin F; Chaput D; Cottin H
    Astrobiology; 2012 May; 12(5):436-44. PubMed ID: 22680690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental Data and Survival Data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station Obtained by the Tanpopo Mission.
    Yamagishi A; Kawaguchi Y; Hashimoto H; Yano H; Imai E; Kodaira S; Uchihori Y; Nakagawa K
    Astrobiology; 2018 Nov; 18(11):1369-1374. PubMed ID: 30289276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revival of Anhydrobiotic Cyanobacterium Biofilms Exposed to Space Vacuum and Prolonged Dryness: Implications for Future Missions beyond Low Earth Orbit.
    Mosca C; Fagliarone C; Napoli A; Rabbow E; Rettberg P; Billi D
    Astrobiology; 2021 May; 21(5):541-550. PubMed ID: 33956489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station.
    Onofri S; de Vera JP; Zucconi L; Selbmann L; Scalzi G; Venkateswaran KJ; Rabbow E; de la Torre R; Horneck G
    Astrobiology; 2015 Dec; 15(12):1052-9. PubMed ID: 26684504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars.
    Billi D; Verseux C; Fagliarone C; Napoli A; Baqué M; de Vera JP
    Astrobiology; 2019 Feb; 19(2):158-169. PubMed ID: 30742497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.