BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30925356)

  • 1. Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome.
    Siciliano RA; Pannella G; Lippolis R; Ricciardi A; Mazzeo MF; Zotta T
    Int J Food Microbiol; 2019 Jun; 298():51-62. PubMed ID: 30925356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87.
    Ianniello RG; Zotta T; Matera A; Genovese F; Parente E; Ricciardi A
    PLoS One; 2016; 11(11):e0164065. PubMed ID: 27812097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting gene expression and activity of heme- and manganese-dependent catalases in Lactobacillus casei strains.
    Ricciardi A; Ianniello RG; Parente E; Zotta T
    Int J Food Microbiol; 2018 Sep; 280():66-77. PubMed ID: 29783045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth fitness, heme uptake and genomic variants in mutants of oxygen-tolerant Lacticaseibacillus casei and Lactiplantibacillus plantarum strains.
    Ricciardi A; Parente E; Ianniello RG; Radovic S; Giavalisco M; Zotta T
    Microbiol Res; 2022 Sep; 262():127096. PubMed ID: 35785649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of aerobic and respiratory growth in the Lactobacillus casei group.
    Zotta T; Ricciardi A; Ianniello RG; Parente E; Reale A; Rossi F; Iacumin L; Comi G; Coppola R
    PLoS One; 2014; 9(6):e99189. PubMed ID: 24918811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Respiratory Growth on the Metabolite Production and Stress Robustness of
    Ricciardi A; Zotta T; Ianniello RG; Boscaino F; Matera A; Parente E
    Front Microbiol; 2019; 10():851. PubMed ID: 31068919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of lactose starvation on the physiology of Lactobacillus casei GCRL163 in the presence or absence of tween 80.
    Al-Naseri A; Bowman JP; Wilson R; Nilsson RE; Britz ML
    J Proteome Res; 2013 Nov; 12(11):5313-22. PubMed ID: 24066708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic and respirative growth of heterofermentative lactic acid bacteria: A screening study.
    Zotta T; Ricciardi A; Ianniello RG; Storti LV; Glibota NA; Parente E
    Food Microbiol; 2018 Dec; 76():117-127. PubMed ID: 30166132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance.
    Wu C; Zhang J; Chen W; Wang M; Du G; Chen J
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):707-22. PubMed ID: 22159611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics.
    Hamon E; Horvatovich P; Bisch M; Bringel F; Marchioni E; Aoudé-Werner D; Ennahar S
    J Proteome Res; 2012 Jan; 11(1):109-18. PubMed ID: 22040141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry.
    Zotta T; Parente E; Ricciardi A
    J Appl Microbiol; 2017 Apr; 122(4):857-869. PubMed ID: 28063197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups.
    Ricciardi A; Ianniello RG; Parente E; Zotta T
    J Appl Microbiol; 2015 Sep; 119(3):776-85. PubMed ID: 26178377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactobacillus casei Low-Temperature, Dairy-Associated Proteome Promotes Persistence in the Mammalian Digestive Tract.
    Lee B; Tachon S; Eigenheer RA; Phinney BS; Marco ML
    J Proteome Res; 2015 Aug; 14(8):3136-47. PubMed ID: 26148687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress.
    Wu R; Zhang W; Sun T; Wu J; Yue X; Meng H; Zhang H
    Int J Food Microbiol; 2011 Jun; 147(3):181-7. PubMed ID: 21561676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei.
    Serata M; Iino T; Yasuda E; Sako T
    Microbiology (Reading); 2012 Apr; 158(Pt 4):953-962. PubMed ID: 22301908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tween 80 and respiratory growth affect metabolite production and membrane fatty acids in Lactobacillus casei N87.
    Zotta T; Tabanelli G; Montanari C; Ianniello RG; Parente E; Gardini F; Ricciardi A
    J Appl Microbiol; 2017 Mar; 122(3):759-769. PubMed ID: 27981716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic metabolism and oxidative stress tolerance in the Lactobacillus plantarum group.
    Guidone A; Ianniello RG; Ricciardi A; Zotta T; Parente E
    World J Microbiol Biotechnol; 2013 Sep; 29(9):1713-22. PubMed ID: 23543191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ccpA gene deficiency in Lactobacillus delbrueckii subsp. bulgaricus under aerobic conditions as assessed by proteomic analysis.
    Zhang G; Liu L; Li C
    Microb Cell Fact; 2020 Jan; 19(1):9. PubMed ID: 31931839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2,3-butanedione and acetoin.
    Zheng Y; Fei Y; Yang Y; Jin Z; Yu B; Li L
    Food Microbiol; 2020 Oct; 91():103540. PubMed ID: 32539956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technological properties of beneficial bacteria from the dairy environment and development of a fermented milk with the beneficial strain
    Colombo M; Todorov SD; Carvalho AF; Nero LA
    J Dairy Res; 2020 May; 87(2):259-262. PubMed ID: 32398178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.