These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30925425)

  • 61. Removal and fate of trace organic compounds in microbial fuel cells.
    Wang H; Heil D; Ren ZJ; Xu P
    Chemosphere; 2015 Apr; 125():94-101. PubMed ID: 25532765
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Power generation from cassava alcohol wastewater: effects of pretreatment and anode aeration.
    Quan X; Tao K; Mei Y; Jiang X
    Bioprocess Biosyst Eng; 2014 Nov; 37(11):2325-32. PubMed ID: 24842224
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Two-stage pretreatment of excess sludge for electricity generation in microbial fuel cell.
    Zhang Y; Zhao YG; Guo L; Gao M
    Environ Technol; 2019 Apr; 40(11):1349-1358. PubMed ID: 29281942
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes.
    Hassan M; Wei H; Qiu H; Su Y; Jaafry SWH; Zhan L; Xie B
    Bioresour Technol; 2018 Jan; 247():434-442. PubMed ID: 28965074
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bioelectrochemical treatment of actual carwash wastewater associated with sustainable energy generation in three-dimensional microbial fuel cell.
    Radeef AY; Ismail ZZ
    Bioelectrochemistry; 2021 Dec; 142():107925. PubMed ID: 34392137
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sacrificing power for more cost-effective treatment: A techno-economic approach for engineering microbial fuel cells.
    Stoll ZA; Ma Z; Trivedi CB; Spear JR; Xu P
    Chemosphere; 2016 Oct; 161():10-18. PubMed ID: 27395791
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation.
    Jiang H; Luo S; Shi X; Dai M; Guo RB
    Biotechnol Lett; 2012 Jul; 34(7):1269-74. PubMed ID: 22421975
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simultaneous organic matter removal and disinfection of wastewater with enhanced power generation in microbial fuel cell.
    Jadhav DA; Ghadge AN; Ghangrekar MM
    Bioresour Technol; 2014 Jul; 163():328-34. PubMed ID: 24835745
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production.
    Munoz-Cupa C; Hu Y; Xu C; Bassi A
    Sci Total Environ; 2021 Feb; 754():142429. PubMed ID: 33254845
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production.
    Gajaraj S; Hu Z
    Chemosphere; 2014 Dec; 117():151-7. PubMed ID: 25014565
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biodegradation of Reactive Orange 16 Dye in Microbial Fuel Cell: An Innovative Way to Minimize Waste Along with Electricity Production.
    Shahi A; Rai BN; Singh RS
    Appl Biochem Biotechnol; 2020 Sep; 192(1):196-210. PubMed ID: 32338331
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells.
    Kim J; Kim B; An J; Lee YS; Chang IS
    Bioresour Technol; 2016 Aug; 213():140-145. PubMed ID: 26972026
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effective swine wastewater treatment by combining microbial fuel cells with flocculation.
    Ding W; Cheng S; Yu L; Huang H
    Chemosphere; 2017 Sep; 182():567-573. PubMed ID: 28525870
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater.
    Chen CY; Tsai TH; Wu PS; Tsao SE; Huang YS; Chung YC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(2):108-115. PubMed ID: 29035671
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optimizing the performance of organics and nutrient removal in constructed wetland-microbial fuel cell systems.
    Wang X; Tian Y; Liu H; Zhao X; Peng S
    Sci Total Environ; 2019 Feb; 653():860-871. PubMed ID: 30759612
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Architectural adaptations of microbial fuel cells.
    Mathuriya AS; Jadhav DA; Ghangrekar MM
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9419-9432. PubMed ID: 30259099
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy.
    Saravanan A; Kumar PS; Srinivasan S; Jeevanantham S; Kamalesh R; Karishma S
    Chemosphere; 2022 Mar; 290():133295. PubMed ID: 34914952
    [TBL] [Abstract][Full Text] [Related]  

  • 78. pH-dependent ammonia removal pathways in microbial fuel cell system.
    Kim T; An J; Lee H; Jang JK; Chang IS
    Bioresour Technol; 2016 Sep; 215():290-295. PubMed ID: 27090407
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparative evaluation of simultaneous nitritation/denitritation and energy recovery in air-cathode microbial fuel cells (ACMFCs) treating low C/N ratio wastewater.
    Yang N; Zhou Q; Zhan G; Liu Y; Luo H; Li D
    Sci Total Environ; 2021 Sep; 788():147652. PubMed ID: 34023598
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Response of microbial community structure to pre-acclimation strategies in microbial fuel cells for domestic wastewater treatment.
    Park Y; Cho H; Yu J; Min B; Kim HS; Kim BG; Lee T
    Bioresour Technol; 2017 Jun; 233():176-183. PubMed ID: 28279910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.