These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 30925668)
1. Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions. Wang L; Zhu D Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925668 [TBL] [Abstract][Full Text] [Related]
2. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body. Li X; Bi C; Li Z; Liu B; Wang T; Zhang S Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414 [TBL] [Abstract][Full Text] [Related]
3. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique. Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode. Liu H; Cong C; Zhao Q; Ma K Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645 [TBL] [Abstract][Full Text] [Related]
5. The influence of lumped mass deployment on the performance of a hybrid galloping energy harvester. Liu M; Jing Y; Wu L Sci Rep; 2024 Oct; 14(1):23911. PubMed ID: 39397074 [TBL] [Abstract][Full Text] [Related]
6. A compound cantilever beam piezoelectric harvester based on wind energy excitation. Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068 [TBL] [Abstract][Full Text] [Related]
7. The Design and Experiment of a Spring-Coupling Electromagnetic Galloping Energy Harvester. Xiong L; Gao S; Jin L; Guo S; Sun Y; Liu F Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241592 [TBL] [Abstract][Full Text] [Related]
8. A hybrid energy harvester inspired by bionic flapping wing structure based on magnetic levitation. Fan B; Fang J; Jiang S; Li C; Shao J; Liu W Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38214593 [TBL] [Abstract][Full Text] [Related]
9. Analytical solution and optimal design for the output performance of Galfenol cantilever energy harvester considering electromechanical coupling effect. Wang L; Lian C; Shu D; Yan Z; Nie X Sci Rep; 2023 Aug; 13(1):12857. PubMed ID: 37553385 [TBL] [Abstract][Full Text] [Related]
10. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester. Li X; Ma T; Liu B; Wang C; Su Y Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938 [TBL] [Abstract][Full Text] [Related]
11. Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow. Demori M; Ferrari M; Bonzanini A; Poesio P; Ferrari V Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28902139 [TBL] [Abstract][Full Text] [Related]
12. Development of enhanced piezoelectric energy harvester induced by human motion. Minami Y; Nakamachi E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1627-30. PubMed ID: 23366218 [TBL] [Abstract][Full Text] [Related]
13. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation. Lee YJ; Qi Y; Zhou G; Lua KB Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701 [TBL] [Abstract][Full Text] [Related]
14. Magnetic Bistability for a Wider Bandwidth in Vibro-Impact Triboelectric Energy Harvesters. Qaseem Q; Ibrahim A Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241631 [TBL] [Abstract][Full Text] [Related]
15. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester. Han B; Zhang S; Liu J; Jiang Y Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218 [TBL] [Abstract][Full Text] [Related]
16. A Self-Propelled Mechanism to Increase Range of Bistable Operation of a Piezoelectric Cantilever-Based Vibration Energy Harvester. Singh KA; Pathak M; Weber RJ; Kumar R IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2184-2194. PubMed ID: 30106722 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the Performance of Piezoelectric Wind Energy Harvester Using Curve-Shaped Attachments on the Bluff Body. Poudel P; Sharma S; Ansari MNM; Vaish R; Kumar R; Ibrahim SM; Thomas P; Bowen C Glob Chall; 2023 Apr; 7(4):2100140. PubMed ID: 37020619 [TBL] [Abstract][Full Text] [Related]
19. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels. Liu H; Dong W; Chang Y; Gao Y; Li W Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761 [TBL] [Abstract][Full Text] [Related]
20. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action. Gu X; He L; Yu G; Liu L; Zhou J; Cheng G Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]