BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 30925682)

  • 21. GhSTOP1, a C2H2 type zinc finger transcription factor is essential for aluminum and proton stress tolerance and lateral root initiation in cotton.
    Kundu A; Das S; Basu S; Kobayashi Y; Kobayashi Y; Koyama H; Ganesan M
    Plant Biol (Stuttg); 2019 Jan; 21(1):35-44. PubMed ID: 30098101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots.
    Yang JL; Fan W; Zheng SJ
    J Zhejiang Univ Sci B; 2019 Jun; 20(6):513-527. PubMed ID: 31090277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.
    Awasthi JP; Saha B; Regon P; Sahoo S; Chowra U; Pradhan A; Roy A; Panda SK
    PLoS One; 2017; 12(4):e0176357. PubMed ID: 28448589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An ATP binding cassette transporter HvABCB25 confers aluminum detoxification in wild barley.
    Liu W; Feng X; Cao F; Wu D; Zhang G; Vincze E; Wang Y; Chen ZH; Wu F
    J Hazard Mater; 2021 Jan; 401():123371. PubMed ID: 32763683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two MATE Transporters with Different Subcellular Localization are Involved in Al Tolerance in Buckwheat.
    Lei GJ; Yokosho K; Yamaji N; Ma JF
    Plant Cell Physiol; 2017 Dec; 58(12):2179-2189. PubMed ID: 29040793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The transcription factor SbHY5 mediates light to promote aluminum tolerance by activating SbMATE and SbSTOP1s expression.
    Zhan M; Gao J; You J; Guan K; Zheng M; Meng X; Li H; Yang Z
    Plant Physiol Biochem; 2023 Dec; 205():108197. PubMed ID: 37995579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of candidate genes conferring tolerance to aluminum stress in Pinus massoniana inoculated with ectomycorrhizal fungus.
    Liu H; Chen H; Ding G; Li K; Ren Q
    BMC Plant Biol; 2020 Nov; 20(1):521. PubMed ID: 33198640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional Analysis of a MATE Gene OsFRDL2 Revealed its Involvement in Al-Induced Secretion of Citrate, but a Lower Contribution to Al Tolerance in Rice.
    Yokosho K; Yamaji N; Fujii-Kashino M; Ma JF
    Plant Cell Physiol; 2016 May; 57(5):976-85. PubMed ID: 26872836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus.
    Navascués J; Pérez-Rontomé C; Sánchez DH; Staudinger C; Wienkoop S; Rellán-Álvarez R; Becana M
    New Phytol; 2012 Feb; 193(3):625-636. PubMed ID: 22136521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots.
    Henderson SW; Baumann U; Blackmore DH; Walker AR; Walker RR; Gilliham M
    BMC Plant Biol; 2014 Oct; 14():273. PubMed ID: 25344057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils.
    Chen ZC; Liao H
    J Genet Genomics; 2016 Nov; 43(11):631-638. PubMed ID: 27890545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in
    Melo JO; Martins LGC; Barros BA; Pimenta MR; Lana UGP; Duarte CEM; Pastina MM; Guimaraes CT; Schaffert RE; Kochian LV; Fontes EPB; Magalhaes JV
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):313-318. PubMed ID: 30545913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. miR393-Mediated Auxin Signaling Regulation is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley.
    Bai B; Bian H; Zeng Z; Hou N; Shi B; Wang J; Zhu M; Han N
    Plant Cell Physiol; 2017 Mar; 58(3):426-439. PubMed ID: 28064248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The roles of organic anion permeases in aluminium resistance and mineral nutrition.
    Delhaize E; Gruber BD; Ryan PR
    FEBS Lett; 2007 May; 581(12):2255-62. PubMed ID: 17418140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of DNA Checkpoints to Confer Aluminum Tolerance.
    Eekhout T; Larsen P; De Veylder L
    Trends Plant Sci; 2017 Feb; 22(2):102-105. PubMed ID: 28065410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum).
    Zhu H; Wang H; Zhu Y; Zou J; Zhao FJ; Huang CF
    BMC Plant Biol; 2015 Jan; 15():16. PubMed ID: 25603892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley.
    Wu L; Yu J; Shen Q; Huang L; Wu D; Zhang G
    BMC Genomics; 2018 Jul; 19(1):560. PubMed ID: 30064381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aluminum stress signaling in plants.
    Panda SK; Baluska F; Matsumoto H
    Plant Signal Behav; 2009 Jul; 4(7):592-7. PubMed ID: 19820334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Transcriptome Analysis of Two Contrasting Soybean Varieties in Response to Aluminum Toxicity.
    Zhao L; Cui J; Cai Y; Yang S; Liu J; Wang W; Gai J; Hu Z; Li Y
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560405
    [No Abstract]   [Full Text] [Related]  

  • 40. Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys.
    Dai H; Zhao J; Ahmed IM; Cao F; Chen ZH; Zhang G; Li C; Wu F
    Plant Physiol Biochem; 2014 Feb; 75():36-44. PubMed ID: 24361508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.