These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 30925744)

  • 1. Prediction of Corrosive Fatigue Life of Submarine Pipelines of API 5L X56 Steel Materials.
    Gao X; Shao Y; Xie L; Wang Y; Yang D
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30925744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty Modeling of Fatigue Crack Growth and Probabilistic Life Prediction for Welded Joints of Nuclear Stainless Steel.
    Chang H; Shen M; Yang X; Hou J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Crack Propagation Method for Pipelines with Interacting Corrosion and Crack Defects.
    Xie M; Wang Y; Xiong W; Zhao J; Pei X
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methodology to evaluate stress corrosion cracking in ethanol environments, applied to circumferential welds on API 5 L steel pipelines.
    Santos EA; Giorgetti V; Marcomini JB; Monteiro MR; Kliauga AM; Sordi VL; Rovere CAD
    MethodsX; 2022; 9():101675. PubMed ID: 35392104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy.
    Masuda K; Ishihara S; Oguma N
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Corrosive Environment on the High-Cycle Fatigue Behavior of Reinforced Concrete by Epoxy Resin: Experimental Study.
    Reza Kashyzadeh K
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic aspects of fatigue crack growth behavior in resin based dental restorative composites.
    Shah MB; Ferracane JL; Kruzic JJ
    Dent Mater; 2009 Jul; 25(7):909-16. PubMed ID: 19233460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Pre-Corrosion Pits on Residual Fatigue Life for 42CrMo Steel.
    Liu D; Li Y; Xie X; Zhao J
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31269733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the Fatigue Crack Growth in Long-Term Operated Mild Steel under Mixed-Mode (I + II, I + III) Loading Conditions.
    Lesiuk G; Smolnicki M; Rozumek D; Krechkovska H; Student O; Correia J; Mech R; De Jesus A
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue Crack Propagation Prediction of Corroded Steel Plate Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plates.
    Li A; Wang L; Xu S
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of PMMA bone cement fixation: fracture and fatigue crack-growth behaviour.
    Nguyen NC; Maloney WJ; Dauskardt RH
    J Mater Sci Mater Med; 1997 Aug; 8(8):473-83. PubMed ID: 15348713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peculiarities of Fatigue Crack Growth in Steel 17H1S after Long-Term Operations on a Gas Pipeline.
    Vira V; Krechkovska H; Kulyk V; Duriagina Z; Student O; Vasyliv B; Cherkes V; Loskutova T
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Finite Element Model for Simulating Crack Growth in the Presence of Holes.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic Emission Monitoring of Fatigue Crack Growth in Hadfield Steel.
    Shi S; Wu G; Chen H; Zhang S
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on the Evolution Law Physical Short Fatigue Crack and Tip Deformation Fields during Crack Closure Process of the Q&P Steel.
    Shang H; Lin Z; Gao H; Shan X; Zhan J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual Fatigue Crack Growth Behavior of Long Cracks at Low Stress Intensity Factor Ranges.
    Kujawski D; Vasudevan AK
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.