These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30925857)

  • 1. reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction.
    Kawaguchi R; Kiryu H; Iwakiri J; Sese J
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):130. PubMed ID: 30925857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA Structure Determination by High-Throughput Structural Analysis.
    Takizawa N
    Methods Mol Biol; 2023; 2586():217-231. PubMed ID: 36705907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput approach to profile RNA structure.
    Delli Ponti R; Marti S; Armaos A; Tartaglia GG
    Nucleic Acids Res; 2017 Mar; 45(5):e35. PubMed ID: 27899588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures.
    Jabbari H; Condon A
    BMC Bioinformatics; 2014 May; 15():147. PubMed ID: 24884954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications.
    Incarnato D; Morandi E; Simon LM; Oliviero S
    Nucleic Acids Res; 2018 Sep; 46(16):e97. PubMed ID: 29893890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome.
    Kawaguchi R; Kiryu H
    BMC Bioinformatics; 2016 May; 17(1):203. PubMed ID: 27153986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. diffBUM-HMM: a robust statistical modeling approach for detecting RNA flexibility changes in high-throughput structure probing data.
    Marangio P; Law KYT; Sanguinetti G; Granneman S
    Genome Biol; 2021 May; 22(1):165. PubMed ID: 34044851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ToNER: A tool for identifying nucleotide enrichment signals in feature-enriched RNA-seq data.
    Promworn Y; Kaewprommal P; Shaw PJ; Intarapanich A; Tongsima S; Piriyapongsa J
    PLoS One; 2017; 12(5):e0178483. PubMed ID: 28542466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. uap: reproducible and robust HTS data analysis.
    Kämpf C; Specht M; Scholz A; Puppel SH; Doose G; Reiche K; Schor J; Hackermüller J
    BMC Bioinformatics; 2019 Dec; 20(1):664. PubMed ID: 31830916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. seqQscorer: automated quality control of next-generation sequencing data using machine learning.
    Albrecht S; Sprang M; Andrade-Navarro MA; Fontaine JF
    Genome Biol; 2021 Mar; 22(1):75. PubMed ID: 33673854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semi-supervised learning approach for RNA secondary structure prediction.
    Yonemoto H; Asai K; Hamada M
    Comput Biol Chem; 2015 Aug; 57():72-9. PubMed ID: 25748534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. StructureFold2: Bringing chemical probing data into the computational fold of RNA structural analysis.
    Tack DC; Tang Y; Ritchey LE; Assmann SM; Bevilacqua PC
    Methods; 2018 Jul; 143():12-15. PubMed ID: 29410279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15.
    Pei S; Slinger BL; Meyer MM
    BMC Bioinformatics; 2017 Jun; 18(1):298. PubMed ID: 28587636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of RNA structures with chemical probing data.
    Ge P; Zhang S
    Methods; 2015 Jun; 79-80():60-6. PubMed ID: 25687190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond.
    Ding Y; Lawrence CE
    Nucleic Acids Res; 2001 Mar; 29(5):1034-46. PubMed ID: 11222752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering common stem-loop motifs in unaligned RNA sequences.
    Gorodkin J; Stricklin SL; Stormo GD
    Nucleic Acids Res; 2001 May; 29(10):2135-44. PubMed ID: 11353083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data structures and compression algorithms for high-throughput sequencing technologies.
    Daily K; Rigor P; Christley S; Xie X; Baldi P
    BMC Bioinformatics; 2010 Oct; 11():514. PubMed ID: 20946637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HTSSIP: An R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP) experiments.
    Youngblut ND; Barnett SE; Buckley DH
    PLoS One; 2018; 13(1):e0189616. PubMed ID: 29298299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments.
    Selega A; Sirocchi C; Iosub I; Granneman S; Sanguinetti G
    Nat Methods; 2017 Jan; 14(1):83-89. PubMed ID: 27819660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.