These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 30925918)

  • 1. Exploiting vulnerabilities of cancer by targeting nuclear receptors of stromal cells in tumor microenvironment.
    Cheng HS; Lee JXT; Wahli W; Tan NS
    Mol Cancer; 2019 Mar; 18(1):51. PubMed ID: 30925918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Compounds as Metabolic Modulators of the Tumor Microenvironment.
    Dias AS; Helguero L; Almeida CR; Duarte IF
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34201298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoreceptors during melanoma progression.
    Calvani M; Pelon F; Comito G; Taddei ML; Moretti S; Innocenti S; Nassini R; Gerlini G; Borgognoni L; Bambi F; Giannoni E; Filippi L; Chiarugi P
    Oncotarget; 2015 Mar; 6(7):4615-32. PubMed ID: 25474135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance.
    Maacha S; Bhat AA; Jimenez L; Raza A; Haris M; Uddin S; Grivel JC
    Mol Cancer; 2019 Mar; 18(1):55. PubMed ID: 30925923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stromal Cells in the Tumor Microenvironment.
    Denton AE; Roberts EW; Fearon DT
    Adv Exp Med Biol; 2018; 1060():99-114. PubMed ID: 30155624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecules modulating tumor-stromal cell interactions: new candidates for anti-tumor drugs.
    Kawada M
    J Antibiot (Tokyo); 2016 Jun; 69(6):411-4. PubMed ID: 27005556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model.
    Liu PF; Cao YW; Zhang SD; Zhao Y; Liu XG; Shi HQ; Hu KY; Zhu GQ; Ma B; Niu HT
    Oncotarget; 2015 Nov; 6(35):37695-705. PubMed ID: 26462177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Sabotaging Role of Myeloid Cells in Anti-Angiogenic Therapy: Coordination of Angiogenesis and Immune Suppression by Hypoxia.
    Li C; Liu T; Bazhin AV; Yang Y
    J Cell Physiol; 2017 Sep; 232(9):2312-2322. PubMed ID: 27935039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruited bone marrow derived cells, local stromal cells and IL-17 at the front line of resistance development to anti-VEGF targeted therapies.
    Darvishi B; Majidzadeh-A K; Ghadirian R; Mosayebzadeh M; Farahmand L
    Life Sci; 2019 Jan; 217():34-40. PubMed ID: 30472294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment.
    Hayes C; Donohoe CL; Davern M; Donlon NE
    Cancer Lett; 2021 Mar; 500():75-86. PubMed ID: 33347908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond.
    Mittal K; Ebos J; Rini B
    Semin Oncol; 2014 Apr; 41(2):235-51. PubMed ID: 24787295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review).
    Katoh M
    Int J Mol Med; 2016 Jul; 38(1):3-15. PubMed ID: 27245147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-associated stromal cells as key contributors to the tumor microenvironment.
    Bussard KM; Mutkus L; Stumpf K; Gomez-Manzano C; Marini FC
    Breast Cancer Res; 2016 Aug; 18(1):84. PubMed ID: 27515302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of tumor microenvironment composition on therapeutic responses and clinical outcomes in cancer.
    Anari F; Ramamurthy C; Zibelman M
    Future Oncol; 2018 Jun; 14(14):1409-1421. PubMed ID: 29848096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials.
    Fang H; Declerck YA
    Cancer Res; 2013 Aug; 73(16):4965-77. PubMed ID: 23913938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors.
    Chan JSK; Sng MK; Teo ZQ; Chong HC; Twang JS; Tan NS
    Oncogene; 2018 Jan; 37(2):160-173. PubMed ID: 28892046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Immunotherapy to the Tumor Microenvironment.
    Dougan M; Dougan SK
    J Cell Biochem; 2017 Oct; 118(10):3049-3054. PubMed ID: 28332219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor microenvironment and therapeutic response.
    Wu T; Dai Y
    Cancer Lett; 2017 Feb; 387():61-68. PubMed ID: 26845449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heparanase: From basic research to therapeutic applications in cancer and inflammation.
    Vlodavsky I; Singh P; Boyango I; Gutter-Kapon L; Elkin M; Sanderson RD; Ilan N
    Drug Resist Updat; 2016 Nov; 29():54-75. PubMed ID: 27912844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance.
    Nilendu P; Sarode SC; Jahagirdar D; Tandon I; Patil S; Sarode GS; Pal JK; Sharma NK
    Cell Oncol (Dordr); 2018 Aug; 41(4):353-367. PubMed ID: 30027403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.