These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Time-resolved photoluminescence studies of perovskite chalcogenides. Ye K; Zhao B; Diroll BT; Ravichandran J; Jaramillo R Faraday Discuss; 2022 Oct; 239(0):146-159. PubMed ID: 35837971 [TBL] [Abstract][Full Text] [Related]
8. The hunt for the third acceptor in CuInSe Babbe F; Elanzeery H; Wolter MH; Santhosh K; Siebentritt S J Phys Condens Matter; 2019 Oct; 31(42):425702. PubMed ID: 31261139 [TBL] [Abstract][Full Text] [Related]
9. Data on lateral photocurrent along a Cu(In,Ga)Se Jang J; Lee S; Chung CH Data Brief; 2019 Dec; 27():104668. PubMed ID: 31700962 [TBL] [Abstract][Full Text] [Related]
10. Interpreting time-resolved photoluminescence of perovskite materials. Péan EV; Dimitrov S; De Castro CS; Davies ML Phys Chem Chem Phys; 2020 Dec; 22(48):28345-28358. PubMed ID: 33300902 [TBL] [Abstract][Full Text] [Related]
11. A study on theoretical models for investigating time-resolved photoluminescence in halide perovskites. Chen J; Lv J; Liu X; Lin J; Chen X Phys Chem Chem Phys; 2023 Mar; 25(11):7574-7588. PubMed ID: 36883300 [TBL] [Abstract][Full Text] [Related]
12. Time-Resolved Photoluminescence Microscopy for the Analysis of Semiconductor-Based Paint Layers. Comelli D; Artesani A; Nevin A; Mosca S; Gonzalez V; Eveno M; Valentini G Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29160862 [TBL] [Abstract][Full Text] [Related]
13. Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface Passivation. Stewart RJ; Grieco C; Larsen AV; Maier JJ; Asbury JB J Phys Chem Lett; 2016 Apr; 7(7):1148-53. PubMed ID: 26966792 [TBL] [Abstract][Full Text] [Related]
14. Carrier Dynamic Investigations of AlGaInAs Quantum Well Revealed by Temperature-Dependent Time-Resolved Photoluminescence. Song Y; Chen Y; Zhang L; Zeng Y; Qiu C; Liang L; Lei Y; Jia P; Qin L; Ning Y; Wang L Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977474 [TBL] [Abstract][Full Text] [Related]
15. Efficient Narrow Band Gap Cu(In,Ga)Se Kamikawa Y; Nishinaga J; Shibata H; Ishizuka S ACS Appl Mater Interfaces; 2020 Oct; 12(40):45485-45492. PubMed ID: 32909729 [TBL] [Abstract][Full Text] [Related]
16. Minority and Majority Charge Carrier Mobility in Cu Hempel H; Hages CJ; Eichberger R; Repins I; Unold T Sci Rep; 2018 Sep; 8(1):14476. PubMed ID: 30262870 [TBL] [Abstract][Full Text] [Related]
18. Surface Passivation for Reliable Measurement of Bulk Electronic Properties of Heterojunction Devices. Bissig B; Guerra-Nunez C; Carron R; Nishiwaki S; La Mattina F; Pianezzi F; Losio PA; Avancini E; Reinhard P; Haass SG; Lingg M; Feurer T; Utke I; Buecheler S; Tiwari AN Small; 2016 Oct; 12(38):5339-5346. PubMed ID: 27490026 [TBL] [Abstract][Full Text] [Related]
19. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Ma J; Kuciauskas D; Albin D; Bhattacharya R; Reese M; Barnes T; Li JV; Gessert T; Wei SH Phys Rev Lett; 2013 Aug; 111(6):067402. PubMed ID: 23971610 [TBL] [Abstract][Full Text] [Related]
20. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method. Kim HJ; Kim CW; Jung DY; Jeong C J Nanosci Nanotechnol; 2016 May; 16(5):5114-8. PubMed ID: 27483883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]