These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30926885)

  • 1. Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time-resolved photoluminescence measurements.
    Weiss TP; Bissig B; Feurer T; Carron R; Buecheler S; Tiwari AN
    Sci Rep; 2019 Mar; 9(1):5385. PubMed ID: 30926885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved photoluminescence on double graded Cu(In,Ga)Se
    Weiss TP; Carron R; Wolter MH; Löckinger J; Avancini E; Siebentritt S; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2019; 20(1):313-323. PubMed ID: 31044022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring time-resolved photoluminescence for nanowires using a three-dimensional computational transient model.
    Ren D; Scofield AC; Farrell AC; Rong Z; Haddad MA; Laghumavarapu RB; Liang B; Huffaker DL
    Nanoscale; 2018 Apr; 10(16):7792-7802. PubMed ID: 29663009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy.
    Barnard ES; Hoke ET; Connor ST; Groves JR; Kuykendall T; Yan Z; Samulon EC; Bourret-Courchesne ED; Aloni S; Schuck PJ; Peters CH; Hardin BE
    Sci Rep; 2013; 3():2098. PubMed ID: 23807197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Instantaneous Recombination Rate Method for the Analysis of Interband Recombination Processes in ZnO Crystals.
    Santamaria L; Maddalena P; Lettieri S
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing surface recombination velocities in semiconductors using two-photon microscopy.
    Gaury B; Haney PM
    J Appl Phys; 2016 Mar; 119(12):. PubMed ID: 27182082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved photoluminescence studies of perovskite chalcogenides.
    Ye K; Zhao B; Diroll BT; Ravichandran J; Jaramillo R
    Faraday Discuss; 2022 Oct; 239(0):146-159. PubMed ID: 35837971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hunt for the third acceptor in CuInSe
    Babbe F; Elanzeery H; Wolter MH; Santhosh K; Siebentritt S
    J Phys Condens Matter; 2019 Oct; 31(42):425702. PubMed ID: 31261139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data on lateral photocurrent along a Cu(In,Ga)Se
    Jang J; Lee S; Chung CH
    Data Brief; 2019 Dec; 27():104668. PubMed ID: 31700962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpreting time-resolved photoluminescence of perovskite materials.
    Péan EV; Dimitrov S; De Castro CS; Davies ML
    Phys Chem Chem Phys; 2020 Dec; 22(48):28345-28358. PubMed ID: 33300902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on theoretical models for investigating time-resolved photoluminescence in halide perovskites.
    Chen J; Lv J; Liu X; Lin J; Chen X
    Phys Chem Chem Phys; 2023 Mar; 25(11):7574-7588. PubMed ID: 36883300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Resolved Photoluminescence Microscopy for the Analysis of Semiconductor-Based Paint Layers.
    Comelli D; Artesani A; Nevin A; Mosca S; Gonzalez V; Eveno M; Valentini G
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29160862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface Passivation.
    Stewart RJ; Grieco C; Larsen AV; Maier JJ; Asbury JB
    J Phys Chem Lett; 2016 Apr; 7(7):1148-53. PubMed ID: 26966792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier Dynamic Investigations of AlGaInAs Quantum Well Revealed by Temperature-Dependent Time-Resolved Photoluminescence.
    Song Y; Chen Y; Zhang L; Zeng Y; Qiu C; Liang L; Lei Y; Jia P; Qin L; Ning Y; Wang L
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Narrow Band Gap Cu(In,Ga)Se
    Kamikawa Y; Nishinaga J; Shibata H; Ishizuka S
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45485-45492. PubMed ID: 32909729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minority and Majority Charge Carrier Mobility in Cu
    Hempel H; Hages CJ; Eichberger R; Repins I; Unold T
    Sci Rep; 2018 Sep; 8(1):14476. PubMed ID: 30262870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Cd-Free Zn
    Chantana J; Kawano Y; Nishimura T; Kato T; Sugimoto H; Minemoto T
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7539-7545. PubMed ID: 30694052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Passivation for Reliable Measurement of Bulk Electronic Properties of Heterojunction Devices.
    Bissig B; Guerra-Nunez C; Carron R; Nishiwaki S; La Mattina F; Pianezzi F; Losio PA; Avancini E; Reinhard P; Haass SG; Lingg M; Feurer T; Utke I; Buecheler S; Tiwari AN
    Small; 2016 Oct; 12(38):5339-5346. PubMed ID: 27490026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations.
    Ma J; Kuciauskas D; Albin D; Bhattacharya R; Reese M; Barnes T; Li JV; Gessert T; Wei SH
    Phys Rev Lett; 2013 Aug; 111(6):067402. PubMed ID: 23971610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.
    Kim HJ; Kim CW; Jung DY; Jeong C
    J Nanosci Nanotechnol; 2016 May; 16(5):5114-8. PubMed ID: 27483883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.