BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30926940)

  • 1. Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall.
    Coelho D; Lopes PA; Cardoso V; Ponte P; Brás J; Madeira MS; Alfaia CM; Bandarra NM; Gerken HG; Fontes CMGA; Prates JAM
    Sci Rep; 2019 Mar; 9(1):5382. PubMed ID: 30926940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testimony on a successful lab protocol to disrupt Chlorella vulgaris microalga cell wall.
    Lopes PA; Coelho D; Prates JAM
    PLoS One; 2022; 17(5):e0268565. PubMed ID: 35587491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-enzyme constituted mixture to improve the degradation of Arthrospira platensis microalga cell wall for monogastric diets.
    Coelho D; Lopes PA; Cardoso V; Ponte P; Brás J; Madeira MS; Alfaia CM; Bandarra NM; Fontes CMGA; Prates JAM
    J Anim Physiol Anim Nutr (Berl); 2020 Jan; 104(1):310-321. PubMed ID: 31680348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An individual alginate lyase is effective in the disruption of Laminaria digitata recalcitrant cell wall.
    Costa M; Pio L; Bule P; Cardoso V; Alfaia CM; Coelho D; Brás J; Fontes CMGA; Prates JAM
    Sci Rep; 2021 May; 11(1):9706. PubMed ID: 33958695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production.
    Gerken HG; Donohoe B; Knoshaug EP
    Planta; 2013 Jan; 237(1):239-53. PubMed ID: 23011569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recalcitrant cell wall of
    Costa MM; Pio LB; Bule P; Cardoso VA; Duarte M; Alfaia CM; Coelho DF; Brás JA; Fontes CMGA; Prates JAM
    Anim Nutr; 2022 Jun; 9():184-192. PubMed ID: 35600544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into cell wall disintegration of Chlorella vulgaris.
    Weber S; Grande PM; Blank LM; Klose H
    PLoS One; 2022; 17(1):e0262500. PubMed ID: 35030225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of dietary Chlorella vulgaris inclusion on goat's milk chemical composition, fatty acids profile and enzymes activities related to oxidation.
    Tsiplakou E; Abdullah MAM; Mavrommatis A; Chatzikonstantinou M; Skliros D; Sotirakoglou K; Flemetakis E; Labrou NE; Zervas G
    J Anim Physiol Anim Nutr (Berl); 2018 Feb; 102(1):142-151. PubMed ID: 28447361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acids-carotenoid complex: An effective anti-TB agent from the chlorella growth factor-extracted spent biomass of Chlorella vulgaris.
    Kumar TS; Josephine A; Sreelatha T; Azger Dusthackeer VN; Mahizhaveni B; Dharani G; Kirubagaran R; Raja Kumar S
    J Ethnopharmacol; 2020 Mar; 249():112392. PubMed ID: 31739107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protease cell wall degradation of Chlorella vulgaris: effect on methane production.
    Mahdy A; Mendez L; Blanco S; Ballesteros M; González-Fernández C
    Bioresour Technol; 2014 Nov; 171():421-7. PubMed ID: 25226058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Omics analysis of pig muscle metabolism under the effects of dietary Chlorella vulgaris and exogenous enzymes.
    Coelho D; Ribeiro D; Osório H; de Almeida AM; Prates JAM
    Sci Rep; 2022 Oct; 12(1):16992. PubMed ID: 36216870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris.
    Zhang P; Li Z; Lu L; Xiao Y; Liu J; Guo J; Fang F
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():30-38. PubMed ID: 28319796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cell disruption methods on the extraction of bioactive metabolites from microalgal biomass.
    Stirk WA; Bálint P; Vambe M; Lovász C; Molnár Z; van Staden J; Ördög V
    J Biotechnol; 2020 Jan; 307():35-43. PubMed ID: 31678206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.
    Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ
    Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA.
    Chen C; Ma X; He Y
    Bioresour Technol; 2012 Aug; 117():264-73. PubMed ID: 22617036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.
    Cheng YS; Labavitch JM; VanderGheynst JS
    Lett Appl Microbiol; 2015 Jan; 60(1):1-7. PubMed ID: 25163669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.
    Cecchin M; Marcolungo L; Rossato M; Girolomoni L; Cosentino E; Cuine S; Li-Beisson Y; Delledonne M; Ballottari M
    Plant J; 2019 Dec; 100(6):1289-1305. PubMed ID: 31437318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.