These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 30927110)
21. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Jiao Y; Kappler A; Croal LR; Newman DK Appl Environ Microbiol; 2005 Aug; 71(8):4487-96. PubMed ID: 16085840 [TBL] [Abstract][Full Text] [Related]
22. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Huang JJ; Heiniger EK; McKinlay JB; Harwood CS Appl Environ Microbiol; 2010 Dec; 76(23):7717-22. PubMed ID: 20889777 [TBL] [Abstract][Full Text] [Related]
23. An Escherichia coli Nitrogen Starvation Response Is Important for Mutualistic Coexistence with Rhodopseudomonas palustris. McCully AL; Behringer MG; Gliessman JR; Pilipenko EV; Mazny JL; Lynch M; Drummond DA; McKinlay JB Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728387 [TBL] [Abstract][Full Text] [Related]
24. A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris. Wang Z; Wen Q; Harwood CS; Liang B; Yang J Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220835 [TBL] [Abstract][Full Text] [Related]
25. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Guzman MS; Rengasamy K; Binkley MM; Jones C; Ranaivoarisoa TO; Singh R; Fike DA; Meacham JM; Bose A Nat Commun; 2019 Mar; 10(1):1355. PubMed ID: 30902976 [TBL] [Abstract][Full Text] [Related]
26. Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph. Fixen KR; Oda Y; Harwood CS mBio; 2019 Nov; 10(6):. PubMed ID: 31772049 [TBL] [Abstract][Full Text] [Related]
27. Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium Rhodopseudomonas palustris strain TIE-1. Eickhoff M; Birgel D; Talbot HM; Peckmann J; Kappler A Geobiology; 2013 May; 11(3):268-78. PubMed ID: 23480293 [TBL] [Abstract][Full Text] [Related]
28. Enhancement of photohydrogen production using phbC deficient mutant Rhodopseudomonas palustris strain M23. Yang CF; Lee CM Bioresour Technol; 2011 May; 102(9):5418-24. PubMed ID: 20961752 [TBL] [Abstract][Full Text] [Related]
29. Cost-effective production of bioplastic polyhydroxybutyrate via introducing heterogeneous constitutive promoter and elevating acetyl-Coenzyme A pool of rapidly growing cyanobacteria. Lee SY; Lee JS; Sim SJ Bioresour Technol; 2024 Feb; 394():130297. PubMed ID: 38185449 [TBL] [Abstract][Full Text] [Related]
31. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris. Navid A; Jiao Y; Wong SE; Pett-Ridge J BMC Bioinformatics; 2019 May; 20(1):233. PubMed ID: 31072303 [TBL] [Abstract][Full Text] [Related]
32. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. Jiao Y; Newman DK J Bacteriol; 2007 Mar; 189(5):1765-73. PubMed ID: 17189359 [TBL] [Abstract][Full Text] [Related]
33. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. McKinlay JB; Oda Y; Rühl M; Posto AL; Sauer U; Harwood CS J Biol Chem; 2014 Jan; 289(4):1960-70. PubMed ID: 24302724 [TBL] [Abstract][Full Text] [Related]
34. Characterization of pII family (GlnK1, GlnK2, and GlnB) protein uridylylation in response to nitrogen availability for Rhodopseudomonas palustris. Connelly HM; Pelletier DA; Lu TY; Lankford PK; Hettich RL Anal Biochem; 2006 Oct; 357(1):93-104. PubMed ID: 16860774 [TBL] [Abstract][Full Text] [Related]
35. Fermentative Escherichia coli makes a substantial contribution to H2 production in coculture with phototrophic Rhodopseudomonas palustris. Sangani AA; McCully AL; LaSarre B; McKinlay JB FEMS Microbiol Lett; 2019 Jul; 366(14):. PubMed ID: 31329226 [TBL] [Abstract][Full Text] [Related]
36. Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris. Karpinets TV; Pelletier DA; Pan C; Uberbacher EC; Melnichenko GV; Hettich RL; Samatova NF PLoS One; 2009; 4(2):e4615. PubMed ID: 19242537 [TBL] [Abstract][Full Text] [Related]
37. Characterization and Process Optimization for Enhanced Production of Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Adnan M; Siddiqui AJ; Ashraf SA; Snoussi M; Badraoui R; Ibrahim AMM; Alreshidi M; Sachidanandan M; Patel M Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987188 [TBL] [Abstract][Full Text] [Related]
38. Influence of Energy and Electron Availability on Zheng Y; Harwood CS Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440 [TBL] [Abstract][Full Text] [Related]
39. Rhodopseudomonas palustris: A biotechnology chassis. Brown B; Wilkins M; Saha R Biotechnol Adv; 2022 Nov; 60():108001. PubMed ID: 35680002 [TBL] [Abstract][Full Text] [Related]
40. Production of Biohydrogen and/or Poly-β-hydroxybutyrate by Rhodopseudomonas sp. Using Various Carbon Sources as Substrate. Touloupakis E; Poloniataki EG; Ghanotakis DF; Carlozzi P Appl Biochem Biotechnol; 2021 Jan; 193(1):307-318. PubMed ID: 32954484 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]