BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30927169)

  • 1. In Vivo Estimation of Head Tissue Conductivities Using Bound Constrained Optimization.
    Ouypornkochagorn T; Ouypornkochagorn S
    Ann Biomed Eng; 2019 Jul; 47(7):1575-1583. PubMed ID: 30927169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of uncertainty in head tissue conductivity and complexity on EEG forward modeling in neonates.
    Azizollahi H; Aarabi A; Wallois F
    Hum Brain Mapp; 2016 Oct; 37(10):3604-22. PubMed ID: 27238749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
    Dabek J; Kalogianni K; Rotgans E; van der Helm FCT; Kwakkel G; van Wegen EEH; Daffertshofer A; de Munck JC
    Neuroimage; 2016 Feb; 127():484-495. PubMed ID: 26589336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography.
    Fernandez-Corazza M; Turovets S; Luu P; Price N; Muravchik CH; Tucker D
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1785-1797. PubMed ID: 29989921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in Reported Human Head Tissue Electrical Conductivity Values.
    McCann H; Pisano G; Beltrachini L
    Brain Topogr; 2019 Sep; 32(5):825-858. PubMed ID: 31054104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the electric conductivity from scalp measurements: feasibility and application to source localization.
    van Burik MJ; Peters MJ
    Clin Neurophysiol; 2000 Aug; 111(8):1514-21. PubMed ID: 10904234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of electrical impedance tomography to reduce systematic errors in the EEG inverse problem--a simulation study.
    Gonçalves S; de Munck JC; Heethaar RM; Lopes da Silva FH; van Dijk BW
    Physiol Meas; 2000 Aug; 21(3):379-93. PubMed ID: 10984206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.
    Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS
    Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis.
    Santos L; Martinho M; Salvador R; Wenger C; Fernandes SR; Ripolles O; Ruffini G; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1778-1781. PubMed ID: 28268672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity.
    Gao N; Zhu SA; He B
    Phys Med Biol; 2006 Jun; 51(12):3067-83. PubMed ID: 16757863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An oppositional biogeography-based optimization technique to reconstruct organ boundaries in the human thorax using electrical impedance tomography.
    Rashid A; Kim BS; Khambampati AK; Kim S; Kim KY
    Physiol Meas; 2011 Jul; 32(7):767-96. PubMed ID: 21646708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional finite element modelling of the neonatal head.
    Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2000 Feb; 21(1):45-52. PubMed ID: 10719998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A guideline for head volume conductor modeling in EEG and MEG.
    Vorwerk J; Cho JH; Rampp S; Hamer H; Knösche TR; Wolters CH
    Neuroimage; 2014 Oct; 100():590-607. PubMed ID: 24971512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel bounded EIT protocol to generate inhomogeneous skull conductivity maps non-invasively.
    Fernandez-Corazza M; Turovets S; Muravchik CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1440-1443. PubMed ID: 33018261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does participant's age impact on tDCS induced fields? Insights from computational simulations.
    McCann H; Beltrachini L
    Biomed Phys Eng Express; 2021 Jun; 7(4):. PubMed ID: 34038881
    [No Abstract]   [Full Text] [Related]  

  • 16. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement.
    Gao N; Zhu SA; He B
    Phys Med Biol; 2005 Jun; 50(11):2675-87. PubMed ID: 15901962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of head models on EEG simulations and inverse source localizations.
    Ramon C; Schimpf PH; Haueisen J
    Biomed Eng Online; 2006 Feb; 5():10. PubMed ID: 16466570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Staelens S; Lemahieu I
    Phys Med Biol; 2009 Oct; 54(20):6079-93. PubMed ID: 19779215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models.
    Van Uitert R; Johnson C; Zhukov L
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2129-37. PubMed ID: 15605860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models.
    Odabaee M; Tokariev A; Layeghy S; Mesbah M; Colditz PB; Ramon C; Vanhatalo S
    Neuroimage; 2014 Aug; 96():73-80. PubMed ID: 24736169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.