BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 30927212)

  • 1. Development of a Two-Way Coupled Eulerian-Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery.
    Hewlin RL; Ciero A; Kizito JP
    Cardiovasc Eng Technol; 2019 Jun; 10(2):299-313. PubMed ID: 30927212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery.
    Hewlin RL; Smith M; Kizito JP
    Cardiovasc Eng Technol; 2023 Oct; 14(5):694-712. PubMed ID: 37723333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Assessment of Magnetic Nanoparticle Targeting Efficiency in a Simplified Circle of Willis Arterial Model.
    Hewlin RL; Tindall JM
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation.
    Aryan H; Beigzadeh B; Siavashi M
    Comput Methods Programs Biomed; 2022 Jun; 219():106778. PubMed ID: 35381489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational simulations of magnetic particle capture in arterial flows.
    Haverkort JW; Kenjeres S; Kleijn CR
    Ann Biomed Eng; 2009 Dec; 37(12):2436-48. PubMed ID: 19760148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.
    Cherry EM; Maxim PG; Eaton JK
    Med Phys; 2010 Jan; 37(1):175-82. PubMed ID: 20175479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Simulation of Magnetic Drug Targeting to the Stenosis Vessel Using Fe
    Badfar H; Yekani Motlagh S; Sharifi A
    Cardiovasc Eng Technol; 2020 Apr; 11(2):162-175. PubMed ID: 31853904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closure technique after carotid endarterectomy influences local hemodynamics.
    Harrison GJ; How TV; Poole RJ; Brennan JA; Naik JB; Vallabhaneni SR; Fisher RK
    J Vasc Surg; 2014 Aug; 60(2):418-27. PubMed ID: 24657293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy.
    Manshadi MKD; Saadat M; Mohammadi M; Shamsi M; Dejam M; Kamali R; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):1963-1973. PubMed ID: 30799655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embolus Transport Simulations with Fully Resolved Particle Surfaces.
    McGah PM
    Cardiovasc Eng Technol; 2019 Dec; 10(4):648-659. PubMed ID: 31529410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capture Efficiency of Biocompatible Magnetic Nanoparticles in Arterial Flow: A Computer Simulation for Magnetic Drug Targeting.
    Lunnoo T; Puangmali T
    Nanoscale Res Lett; 2015 Dec; 10(1):426. PubMed ID: 26515074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamics analyses in treated and untreated carotid arteries of the same patient: A preliminary study based on three patient cases.
    Mei Y; Müller-Eschner M; Yi J; Zhang Z; Chen D; Kronlage M; von Tengg-Kobligk H; Kauczor HU; Böckler D; Demirel S
    Biomed Mater Eng; 2015; 26 Suppl 1():S299-309. PubMed ID: 26406016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the effect of SPION size in a stent assisted magnetic drug targeting system with interparticle interactions.
    Mardinoglu A; Cregg PJ
    ScientificWorldJournal; 2015; 2015():618658. PubMed ID: 25815370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions.
    Bernad SI; Susan-Resiga D; Bernad ES
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31324029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sinus size and position on hemodynamics during pulsatile flow in a carotid artery bifurcation.
    Nagargoje M; Gupta R
    Comput Methods Programs Biomed; 2020 Aug; 192():105440. PubMed ID: 32299026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field.
    Tehrani MD; Yoon JH; Kim MO; Yoon J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):303-13. PubMed ID: 25163053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects.
    Milner JS; Moore JA; Rutt BK; Steinman DA
    J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.