These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 30927212)
1. Development of a Two-Way Coupled Eulerian-Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery. Hewlin RL; Ciero A; Kizito JP Cardiovasc Eng Technol; 2019 Jun; 10(2):299-313. PubMed ID: 30927212 [TBL] [Abstract][Full Text] [Related]
2. Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery. Hewlin RL; Smith M; Kizito JP Cardiovasc Eng Technol; 2023 Oct; 14(5):694-712. PubMed ID: 37723333 [TBL] [Abstract][Full Text] [Related]
3. Computational Assessment of Magnetic Nanoparticle Targeting Efficiency in a Simplified Circle of Willis Arterial Model. Hewlin RL; Tindall JM Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768867 [TBL] [Abstract][Full Text] [Related]
4. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation. Aryan H; Beigzadeh B; Siavashi M Comput Methods Programs Biomed; 2022 Jun; 219():106778. PubMed ID: 35381489 [TBL] [Abstract][Full Text] [Related]
5. Computational simulations of magnetic particle capture in arterial flows. Haverkort JW; Kenjeres S; Kleijn CR Ann Biomed Eng; 2009 Dec; 37(12):2436-48. PubMed ID: 19760148 [TBL] [Abstract][Full Text] [Related]
6. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related]
7. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting. Cherry EM; Maxim PG; Eaton JK Med Phys; 2010 Jan; 37(1):175-82. PubMed ID: 20175479 [TBL] [Abstract][Full Text] [Related]
8. Numerical Simulation of Magnetic Drug Targeting to the Stenosis Vessel Using Fe Badfar H; Yekani Motlagh S; Sharifi A Cardiovasc Eng Technol; 2020 Apr; 11(2):162-175. PubMed ID: 31853904 [TBL] [Abstract][Full Text] [Related]
9. Closure technique after carotid endarterectomy influences local hemodynamics. Harrison GJ; How TV; Poole RJ; Brennan JA; Naik JB; Vallabhaneni SR; Fisher RK J Vasc Surg; 2014 Aug; 60(2):418-27. PubMed ID: 24657293 [TBL] [Abstract][Full Text] [Related]
10. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy. Manshadi MKD; Saadat M; Mohammadi M; Shamsi M; Dejam M; Kamali R; Sanati-Nezhad A Drug Deliv; 2018 Nov; 25(1):1963-1973. PubMed ID: 30799655 [TBL] [Abstract][Full Text] [Related]
11. Embolus Transport Simulations with Fully Resolved Particle Surfaces. McGah PM Cardiovasc Eng Technol; 2019 Dec; 10(4):648-659. PubMed ID: 31529410 [TBL] [Abstract][Full Text] [Related]
12. Capture Efficiency of Biocompatible Magnetic Nanoparticles in Arterial Flow: A Computer Simulation for Magnetic Drug Targeting. Lunnoo T; Puangmali T Nanoscale Res Lett; 2015 Dec; 10(1):426. PubMed ID: 26515074 [TBL] [Abstract][Full Text] [Related]
13. Hemodynamics analyses in treated and untreated carotid arteries of the same patient: A preliminary study based on three patient cases. Mei Y; Müller-Eschner M; Yi J; Zhang Z; Chen D; Kronlage M; von Tengg-Kobligk H; Kauczor HU; Böckler D; Demirel S Biomed Mater Eng; 2015; 26 Suppl 1():S299-309. PubMed ID: 26406016 [TBL] [Abstract][Full Text] [Related]
14. Modelling the effect of SPION size in a stent assisted magnetic drug targeting system with interparticle interactions. Mardinoglu A; Cregg PJ ScientificWorldJournal; 2015; 2015():618658. PubMed ID: 25815370 [TBL] [Abstract][Full Text] [Related]
15. Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions. Bernad SI; Susan-Resiga D; Bernad ES Molecules; 2019 Jul; 24(13):. PubMed ID: 31324029 [TBL] [Abstract][Full Text] [Related]
16. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Perktold K; Rappitsch G J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682 [TBL] [Abstract][Full Text] [Related]
17. Effect of sinus size and position on hemodynamics during pulsatile flow in a carotid artery bifurcation. Nagargoje M; Gupta R Comput Methods Programs Biomed; 2020 Aug; 192():105440. PubMed ID: 32299026 [TBL] [Abstract][Full Text] [Related]
18. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. Wells DR; Archie JP; Kleinstreuer C J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904 [TBL] [Abstract][Full Text] [Related]
19. A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field. Tehrani MD; Yoon JH; Kim MO; Yoon J IEEE Trans Biomed Eng; 2015 Jan; 62(1):303-13. PubMed ID: 25163053 [TBL] [Abstract][Full Text] [Related]
20. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Milner JS; Moore JA; Rutt BK; Steinman DA J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]