BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 30927418)

  • 1. Formation of organotypic testicular organoids in microwell culture†.
    Sakib S; Uchida A; Valenzuela-Leon P; Yu Y; Valli-Pulaski H; Orwig K; Ungrin M; Dobrinski I
    Biol Reprod; 2019 Jun; 100(6):1648-1660. PubMed ID: 30927418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Porcine Testicular Organoids with Testis Specific Architecture using Microwell Culture.
    Sakib S; Yu Y; Voigt A; Ungrin M; Dobrinski I
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testicular organoid generation by a novel in vitro three-layer gradient system.
    Alves-Lopes JP; Söder O; Stukenborg JB
    Biomaterials; 2017 Jun; 130():76-89. PubMed ID: 28364632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics, ultrastructure and gene expression of human in vitro organized testis cells from testicular sperm extraction biopsies.
    von Kopylow K; Schulze W; Salzbrunn A; Schaks M; Schäfer E; Roth B; Schlatt S; Spiess AN
    Mol Hum Reprod; 2018 Mar; 24(3):123-134. PubMed ID: 29304256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testicular organoid formation is a property of immature somatic cells, which self-assemble and exhibit long-term hormone-responsive endocrine function.
    Edmonds ME; Woodruff TK
    Biofabrication; 2020 Jul; 12(4):045002. PubMed ID: 32492667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of Organized Porcine Testicular Organoids in Solubilized Hydrogels from Decellularized Extracellular Matrix.
    Vermeulen M; Del Vento F; Kanbar M; Pyr Dit Ruys S; Vertommen D; Poels J; Wyns C
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31684200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold-Based and Scaffold-Free Testicular Organoids from Primary Human Testicular Cells.
    Baert Y; Rombaut C; Goossens E
    Methods Mol Biol; 2019; 1576():283-290. PubMed ID: 28674937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro.
    Pendergraft SS; Sadri-Ardekani H; Atala A; Bishop CE
    Biol Reprod; 2017 Mar; 96(3):720-732. PubMed ID: 28339648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testicular organoids to study cell-cell interactions in the mammalian testis.
    Sakib S; Goldsmith T; Voigt A; Dobrinski I
    Andrology; 2020 Jul; 8(4):835-841. PubMed ID: 31328437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irradiation affects germ and somatic cells in prepubertal monkey testis xenografts.
    Tröndle I; Westernströer B; Wistuba J; Terwort N; Schlatt S; Neuhaus N
    Mol Hum Reprod; 2017 Mar; 23(3):141-154. PubMed ID: 28130393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of some phthalate esters and other testicular toxins on primary cultures of testicular cells.
    Gray TJ; Beamand JA
    Food Chem Toxicol; 1984 Feb; 22(2):123-31. PubMed ID: 6538161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro spermatogenesis through testis modelling: Toward the generation of testicular organoids.
    Richer G; Baert Y; Goossens E
    Andrology; 2020 Jul; 8(4):879-891. PubMed ID: 31823507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extra Cellular Matrix-Based and Extra Cellular Matrix-Free Generation of Murine Testicular Organoids.
    Edmonds ME; Forshee MD; Woodruff TK
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33104061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reassembly of adult human testicular cells: can testis cord-like structures be created in vitro?
    Mincheva M; Sandhowe-Klaverkamp R; Wistuba J; Redmann K; Stukenborg JB; Kliesch S; Schlatt S
    Mol Hum Reprod; 2018 Feb; 24(2):55-63. PubMed ID: 29294090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testicular organoids: a new model to study the testicular microenvironment in vitro?
    Alves-Lopes JP; Stukenborg JB
    Hum Reprod Update; 2018 Mar; 24(2):176-191. PubMed ID: 29281008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TNF alpha-mediated disruption of spermatogenesis in response to Sertoli cell injury in rodents is partially regulated by MMP2.
    Yao PL; Lin YC; Richburg JH
    Biol Reprod; 2009 Mar; 80(3):581-9. PubMed ID: 19038859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary Human Testicular Cells Self-Organize into Organoids with Testicular Properties.
    Baert Y; De Kock J; Alves-Lopes JP; Söder O; Stukenborg JB; Goossens E
    Stem Cell Reports; 2017 Jan; 8(1):30-38. PubMed ID: 28017656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a three-layer gradient system of cells for rat testicular organoid generation.
    Alves-Lopes JP; Söder O; Stukenborg JB
    Nat Protoc; 2018 Feb; 13(2):248-259. PubMed ID: 29300391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age- and species-dependent infiltration of macrophages into the testis of rats and mice exposed to mono-(2-Ethylhexyl) phthalate (MEHP).
    Murphy CJ; Stermer AR; Richburg JH
    Biol Reprod; 2014 Jul; 91(1):18. PubMed ID: 24876407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The p53 protein influences the sensitivity of testicular germ cells to mono-(2-ethylhexyl) phthalate-induced apoptosis by increasing the membrane levels of Fas and DR5 and decreasing the intracellular amount of c-FLIP.
    Chandrasekaran Y; Richburg JH
    Biol Reprod; 2005 Jan; 72(1):206-13. PubMed ID: 15371270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.