These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30927494)

  • 1. Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli.
    Boecker S; Zahoor A; Schramm T; Link H; Klamt S
    Biotechnol J; 2019 Sep; 14(9):e1800438. PubMed ID: 30927494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli.
    Boecker S; Harder BJ; Kutscha R; Pflügl S; Klamt S
    Microb Cell Fact; 2021 Mar; 20(1):63. PubMed ID: 33750397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli.
    Hädicke O; Bettenbrock K; Klamt S
    Biotechnol Bioeng; 2015 Oct; 112(10):2195-9. PubMed ID: 25899755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing and utilizing oxygen-dependent promoters for efficient dynamic metabolic engineering.
    Wichmann J; Behrendt G; Boecker S; Klamt S
    Metab Eng; 2023 May; 77():199-207. PubMed ID: 37054967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATPase-based implementation of enforced ATP wasting in Saccharomyces cerevisiae for improved ethanol production.
    Zahoor A; Messerschmidt K; Boecker S; Klamt S
    Biotechnol Biofuels; 2020 Nov; 13(1):185. PubMed ID: 33292464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of the ATP pool as a tool for metabolic engineering.
    Hädicke O; Klamt S
    Biochem Soc Trans; 2015 Dec; 43(6):1140-5. PubMed ID: 26614651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When Do Two-Stage Processes Outperform One-Stage Processes?
    Klamt S; Mahadevan R; Hädicke O
    Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 29131522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli.
    Schuhmacher T; Löffler M; Hurler T; Takors R
    J Biotechnol; 2014 Nov; 190():96-104. PubMed ID: 24833421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights on transcriptional responses of genes involved in carbon central metabolism, respiration and fermentation to low ATP levels in Escherichia coli.
    Soria S; de Anda R; Flores N; Romero-Garcia S; Gosset G; Bolívar F; Báez-Viveros JL
    J Basic Microbiol; 2013 Apr; 53(4):365-80. PubMed ID: 22914992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli.
    Liu R; Liang L; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Appl Microbiol Biotechnol; 2012 May; 94(4):959-68. PubMed ID: 22294432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production.
    Wang B; Zhang X; Yu X; Cui Z; Wang Z; Chen T; Zhao X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2155-2170. PubMed ID: 30623201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium.
    Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of succinate yield by manipulating NADH/NAD
    Li J; Li Y; Cui Z; Liang Q; Qi Q
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3153-3161. PubMed ID: 28108762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering central metabolic modules of Escherichia coli for improving β-carotene production.
    Zhao J; Li Q; Sun T; Zhu X; Xu H; Tang J; Zhang X; Ma Y
    Metab Eng; 2013 May; 17():42-50. PubMed ID: 23500001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering.
    de Kok S; Kozak BU; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2012 Jun; 12(4):387-97. PubMed ID: 22404754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Microb Cell Fact; 2015 Jun; 14():80. PubMed ID: 26063229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete Biosynthesis of Anthocyanins Using
    Jones JA; Vernacchio VR; Collins SM; Shirke AN; Xiu Y; Englaender JA; Cress BF; McCutcheon CC; Linhardt RJ; Gross RA; Koffas MAG
    mBio; 2017 Jun; 8(3):. PubMed ID: 28588129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production.
    Tao S; Qian Y; Wang X; Cao W; Ma W; Chen K; Ouyang P
    Microb Cell Fact; 2018 Sep; 17(1):147. PubMed ID: 30227873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand.
    Liu J; Kandasamy V; Würtz A; Jensen PR; Solem C
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9509-9517. PubMed ID: 27344595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.