BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30927750)

  • 1. Analysis of coffee adulterated with roasted corn and roasted soybean using voltammetric electronic tongue.
    Arrieta AA; Arrieta PL; Mendoza JM
    Acta Sci Pol Technol Aliment; 2019; 18(1):35-41. PubMed ID: 30927750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Corn Adulteration in Brazilian Coffee (Coffea arabica) by Tocopherol Profiling and Near-Infrared (NIR) Spectroscopy.
    Winkler-Moser JK; Singh M; Rennick KA; Bakota EL; Jham G; Liu SX; Vaughn SF
    J Agric Food Chem; 2015 Dec; 63(49):10662-8. PubMed ID: 26600312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics.
    Reis N; Franca AS; Oliveira LS
    Talanta; 2013 Oct; 115():563-8. PubMed ID: 24054633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma-tocopherol as a marker of Brazilian coffee (Coffea arabica L.) adulteration by corn.
    Jham GN; Winkler JK; Berhow MA; Vaughn SF
    J Agric Food Chem; 2007 Jul; 55(15):5995-9. PubMed ID: 17602658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coffee arabica adulteration: Detection of wheat, corn and chickpea.
    Sezer B; Apaydin H; Bilge G; Boyaci IH
    Food Chem; 2018 Oct; 264():142-148. PubMed ID: 29853358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of roasted and ground coffee adulteration by HPLC and by amperometric and by post-column derivatization UV-Vis detection.
    Domingues DS; Pauli ED; de Abreu JE; Massura FW; Cristiano V; Santos MJ; Nixdorf SL
    Food Chem; 2014 Mar; 146():353-62. PubMed ID: 24176354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid authentication of coffee blends and quantification of 16-O-methylcafestol in roasted coffee beans by nuclear magnetic resonance.
    Schievano E; Finotello C; De Angelis E; Mammi S; Navarini L
    J Agric Food Chem; 2014 Dec; 62(51):12309-14. PubMed ID: 25431971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee.
    Couto CC; Chávez DWH; Oliveira EMM; Freitas-Silva O; Casal S
    Food Chem; 2024 Jul; 446():138862. PubMed ID: 38430775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple voltammetric electronic tongue for the analysis of coffee adulterations.
    de Morais TCB; Rodrigues DR; de Carvalho Polari Souto UT; Lemos SG
    Food Chem; 2019 Feb; 273():31-38. PubMed ID: 30292371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry.
    Daniel D; Lopes FS; Santos VBD; do Lago CL
    Food Chem; 2018 Mar; 243():305-310. PubMed ID: 29146342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot study of NMR-based sensory prediction of roasted coffee bean extracts.
    Wei F; Furihata K; Miyakawa T; Tanokura M
    Food Chem; 2014; 152():363-9. PubMed ID: 24444949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of Corn Adulteration in Wet and Dry-Processed Peaberry Ground Roasted Coffees by UV-Vis Spectroscopy and Chemometrics.
    Yulia M; Suhandy D
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative NMR Methodology for the Authentication of Roasted Coffee and Prediction of Blends.
    Burton IW; Martinez Farina CF; Ragupathy S; Arunachalam T; Newmaster S; Berrué F
    J Agric Food Chem; 2020 Dec; 68(49):14643-14651. PubMed ID: 33252222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA extraction and analysis from processed coffee beans.
    Martellossi C; Taylor EJ; Lee D; Graziosi G; Donini P
    J Agric Food Chem; 2005 Nov; 53(22):8432-6. PubMed ID: 16248533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Furan in roasted, ground and brewed coffee.
    Gruczyńska E; Kowalska D; Kozłowska M; Majewska E; Tarnowska K
    Rocz Panstw Zakl Hig; 2018; 69(2):111-118. PubMed ID: 29766689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Front-face synchronous fluorescence spectroscopy: a rapid and non-destructive authentication method for Arabica coffee adulterated with maize and soybean flours.
    Xie JY; Tan J
    J Verbrauch Lebensm; 2022; 17(3):209-219. PubMed ID: 35996456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant properties of roasted coffee residues.
    Yen WJ; Wang BS; Chang LW; Duh PD
    J Agric Food Chem; 2005 Apr; 53(7):2658-63. PubMed ID: 15796608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homostachydrine (pipecolic acid betaine) as authentication marker of roasted blends of Coffea arabica and Coffea canephora (Robusta) beans.
    Servillo L; Giovane A; Casale R; Cautela D; D'Onofrio N; Balestrieri ML; Castaldo D
    Food Chem; 2016 Aug; 205():52-7. PubMed ID: 27006213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-acetylglutamate and N-acetylaspartate in soybeans (Glycine max L.), maize (Zea mays L.), [corrected] and other foodstuffs.
    Hession AO; Esrey EG; Croes RA; Maxwell CA
    J Agric Food Chem; 2008 Oct; 56(19):9121-6. PubMed ID: 18781757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Furan levels in coffee as influenced by species, roast degree, and brewing procedures.
    Arisseto AP; Vicente E; Ueno MS; Tfouni SA; Toledo MC
    J Agric Food Chem; 2011 Apr; 59(7):3118-24. PubMed ID: 21388135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.